I M.Sc. (PH)		PPH12A
SEMESTER - I	MATHEMATICAL PHYSICS I	HRS/WK-5
CORE – II		CREDIT-4

OBJECTIVES:

To develop the ability to solve Linear and Non-linear differential Mathematical problems.

COURSE OUTCOMES (CO):

CO1: Give the basic knowledge of vector spacesCO2:Study the complex variablesCO3:Understand the Fourier Series And Laplace TransformsCO4:Under various differential equationsCO5: Understand the concepts of special functions

Relationship Matrix Course Outcomes, Programme Outcomes and Programme Specific Outcomes

SEMESTER - I	COURSE CODE: PPH12A					COURSE TITLE:MATHEMATICAL PHYSICS I						Hours: Credit: 5 4
Course Outcomes COs	Programme Outcomes POs					Programme Specific Outcomes PSOs					Mean Score of CO's	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	
CO1	3.5	2	4.1	3.4	3.5	2.5	3	3.4	4	3.2	3.2	3.25
CO2	3.4	3	3.6	3	3.5	2.8	4	3.6	3.7	2.1	3.5	3.29
CO3	3.5	4	3.5	2.8	3	3	3.5	3.5	3.4	4	3.3	3.40
CO4	3.4	3.6	3	4.2	3.7	3.5	3.4	2.8	3.4	3.7	3.6	3.48
CO5	4.3	3.6	3.5	3.2	3.6	2.8	3.5	3.2	4.2	3.5	3.7	3.55
Mean Overall Score									3.39			

Result: The Score for this course is 3.39 (High)

Association	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Interval	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Rating	Very Poor	Poor	Moderate	High	Very High

This course is having **High** association with Programme Outcome and Programme Specific Outcome.

UNIT - I

(15 Hours)

Linear Algebra: Linear equations - Linear combinations - linear dependence and

Orthonormal basis - Gram-Schmidt orthogonalization–solution of linear equations by determinants (Cramer's rule)-Transformation of vectors and matrices - Similarity of linear transformations- Diagonalization of a matrix - completeness. – Problems.

(15 Hours)

(15 Hours)

(15 Hours)

UNIT - II

transformations -

Complex Variables: Complex variable theory - Single and multivalued functions - The Cauchy-Riemann differential equations - Cauchy's integral theorem and integral formula - Residue and Cauchy's residue theorem - Liouville's theorem – Applications of the evaluation of definite integrals. – Problems.

independence - Vector spaces: real and complex - subspace, basis, dimension - Linear

Inner product, norm, Orthogonality, - Cauchy-Schwarz inequality -

UNIT - III

Fourier series: Fourier series — Dirichlet conditions – Even function and odd function-Halfwave expansions – arbitrary period—Parseval's theorem- Application of Fourier series in Harmonic Analysis– Problems.

$\mathbf{UNIT}-\mathbf{IV}$

Integral transforms: Fourier integral transforms - Fourier Sine and Cosine transformation - Laplace transform –change of scale property- first and second (Heaviside's) shifting theorems - Inverse Laplace transforms –some important formulae- First and second shifting property-

Laplace transformation for solving differential equations of a function. – Problems. UNIT - V (15 Hours)

Differential Equations: Linear ordinary differential equations of first order and second order – Degree of ordinary differential equations – Linear differential equation - General solution and particular solution – Method of solution – Higher order differential equation – Homogeneous linear differential equation – Linear differential equation of second order. – Problems.

TEXT BOOKS:

1. H.k.dass, Dr Rama Verma, Mathematical Physics.2016

- 2. Sathyaprakash. R, Mathematical Physics.2014
- 3. P K Chattopadhyay Mathematical Physics, 2013.
- 4. Spiegel, Fourier Laplace Transforms, Schaum's Outline Series.2014

REFERENCE BOOKS:

- 1. Kreyszig E, Advanced Engineering Mathematics.2011
- 2. Howard Anton, Elementary Linear Algebra, John Wiley Sons2000
- 3. Engineering Mathematics-series, Dr. M. K. Venkataraman- The National publishing company-Madras.1992

I M.Sc. (PH)	MATHEMATICAL PHYSICS - II	PPH22A	
SEMESTER – II		HRS/WK-5	
CORE – V		CREDIT-4	

OBJECTIVES:

To understand the advanced concept of group theory, partial differential equations, probability and statistics.

COURSE OUTCOMES (CO):

CO1: To give the basic knowledge of tensorsCO2: Get the acquire knowledge of group theoryCO3: Understand the concepts partial differential equationCO4:Study numerical analysisCO5:Understand the concepts of probability and statistics

Relationship Matrix Course Outcomes, Programme Outcomes and Programme Specific Outcomes

SEMESTER	COURSE CODE:					COURSE TITLE:						Hours: Credit:
-II	PPH22A					MATHEMATICAL PHYSICS- II						5 4
Course	Programme Outcomes					Programme Specific Outcomes PSOs						Mean Score
Outcomes	POs										of CO's	
COs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	
CO1	5	5	5	5	4	5	5	5	5	5	4	4.818
CO2	5	5	5	5	4	5	5	5	5	5	4	4.818
CO3	5	5	5	5	4	5	5	5	5	5	4	4.818
CO4	5	5	5	5	4	5	5	5	5	5	4	4.818
CO5	5	5	5	5	4	5	5	5	5	5	4	4.818
Mean Overall Score									4.818			

Result: The Score for this course is 4.81 (Very High)

Association	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Interval	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Rating	Very Poor	Poor	Moderate	High	Very High

This course is having **VeryHigh**association with Programme Outcome and Programme Specific Outcome.

UNIT - I

(15 Hours)

Tensors: Tensors Under Generalized Coordinate Transformations - Definition of tensor; rank,

symmetric tensors, contraction, quotient rule; tensors with zero components, tensor equations, metric tensors and their determinants; pseudo tensors; transformation of $\varepsilon^{ijk}/(g)^{1/2}$ -Problems

UNIT - II

Group Theory: Definition of groups, subgroups and conjugate classes - Symmetry elements, Transformation, Matrix representation - Point groups - representation of a group - Reducible and irreducible representations - Orthogonality theorem - character of a representation character Table C2v and C3v - Application to IR and Raman active vibrations of XY3 molecules - Symmetry rotations SO(2) and SO(3) groups - Symmetry Unitary SU(2) and SU(3) groups. -Problems

UNIT - III

Partial Differential Equation: Formation of Partial differential equations - elimination of arbitrary constants - elimination of arbitrary functions -Singular integral - General integral -Standard types of first order equations – Linear Partial Differential equation of Second and higher order with constant coefficients. One dimensional wave equations, heat equation-Problems

UNIT - IV

Special Functions: Gamma and beta functions - Legendre, Bessel, Hermite and Laguerre equations - Generating functions - Series solutions and recurrence relations for Legendre, Bessel, Hermite and Laguerre equations - Physical applications. -Problems UNIT - V

Probability and Statistics: Events - Sample Space - Mathematical and Statistical definitions of Probability - Random variables - Distribution function - Discrete random variable -Continuous random variable – Continuous distribution function –Mathematical expectation and variance- Poisson distribution - Normal distribution - Properties of normal distribution -Mean, Median, Mode. -Problems

TEXT BOOKS:

- 1. Engineering Mathematics, M.K.Venkataraman, National Publications, Chennai (2009)
- 2. Fundamentals of Mathematical Statistics by S.C.Gupta, V.K.Kapoor, Sultan Chand and Sons, 11th edition 1982
- 3. Statistical methods by S.P.Gupta Sultan Chand.2011
- 4. Statistics (Theory and Practice) by R.S.N.Pillai& V. Bagavathy -S.Chand& Co.

REFERENCE BOOKS:

- 1. Kreyszig E, Advanced Engineering Mathematics.2011
- 2. Reily K.F Hobson M.P. and Bence S.J, Mathematical methods 2006

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)