YEAR – III	FOOD AND DAIRY MICROBIOLOGY	19MB509
SEMESTER - V	(For the students who are admitted in the year	HRS/WK - 5
CORE - 9	2019 - 2020 and onwards)	CREDITS - 4

Objective: To make the students understand the importance of microbes in food and dairy industry.

Course Outcomes: `

Upon successful completion of the course, the student:

- **CO 1:** will be able to describe the importance of microorganisms in food and methods used for food preservation.
- CO 2: will be able to identify the source of contamination and spoilage causing microorganisms in different foods
- **CO 3:** will be able to understand the role of microorganisms in food fermentation.
- **CO 4:** will be able to apply the knowledge in dairy product production and develop the skill for testing milk sample.
- CO 5: will be able to understand food borne diseases and detect the pathogens in different food samples.

SEMESTER: V	COURSE CODE: 19MB509					FOOL	RSE TI AND D ROBIOL	AIRY	HOURS:	CREDITS:
COURSE OUTCOMES	PRO	GRAMME OUTCOMES (PO) PROGRAMME SPECIFIC OUTCOMES (PSO)					MEAN SCORE OF			
OUTCOMES	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	COS	
CO1	3.5	3.5	4	4.5	4	4	4	5	4	4.6
CO2	3	3	3.5	3.5	3	3	4	4.5		3.4
CO3	2.5	3	3	4	4	3	4.5	4.5		3.5
CO4	4	2.5	3	3.5	3.5	3.5	3.5	4	3.4	
CO5	3	2.5	3.5	4	4	3.5 4 4.5				3.6
	Mean Overall Score									

Result: The score of this course is 3.7 (High)

Associatio	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
n					
Scale	1	2	3	4	5
Interval	0<=rating<=	1.1<=rating<=	2.1<=rating<=	3.1<=rating<=	4.1<=rating<=
	1	2	3	4	5
Rating	Very Poor	Poor	Moderate	High	Very High

This Course is having **HIGH** association with Programme Outcomes and Programme Specific Outcomes.

Unit - 1 (15 hrs)

Food as a substrate for microorganisms - Microorganisms important in food microbiology - Principles of food preservation - asepsis - removal of microorganisms - high temperature - low temperature-drying- food additives - radiation

Unit - 2 (15 hrs)

Contamination, spoilage and preservation of - vegetables and fruits, meat and meat products, fish and sea food, poultry products, canned food.

Unit - 3 (15 hrs)

Food fermentations – bread, malted beverages, idly, fermented vegetables, pickles, Oriental fermented foods- Probiotics: definition, types of microorganisms and health benefits

Unit – 4 (15 hrs)

Milk and milk products - fermented dairy products - butter, cheese, yogurt, acidophilus milk; Spoilage and defects of fermented dairy products; Milk-borne diseases; Microbiological analysis of milk – dye reduction test, total bacterial count; Applications of microbial enzymes in dairy industry (Proteases and Lipases).

Unit – 5 (15 hrs)

Food-borne infections and intoxications - bacterial, non-bacterial - laboratory methods for detection of food borne pathogens (cultural and rapid method) - Food plant sanitation - quality control - HACCP.

Text Books

- Food Microbiology. 2013 (5th Edition). William C. Frazier, Dennis C. Westhoff, K. N. Vanitha. McGraw-Hill Education, India.
- Modern Food Microbiology. 2007 (2nd Edition). James, M.J. CBS Publisher, New Delhi

Reference Books

- Food Microbiology. 2016 (1st Edition). Foster, W. M. CBS Publishers and Distributors Pvt. Ltd, New Delhi.
- Food Microbiology. 2015 (4th Edition). Adams, M.R., Moss, M.O and McClure, P. J. RSC Publication, CPI Group (UK) Ltd, Croydon, UK.
- Modern Food Microbiology. 2005 (7th Edition). James M. Jay, Martin J. Loessner, David A. Golden. Springer Science & Business.
- Food Microbiology -Fundamentals and Frontiers. 2001 (2nd Edition). Doyle, M. P., L. R. Beuchat and T. J. Montville. ASM Press. Washington, D.C.
- Dairy Microbiology Hand Book. 2002 (3rd Edition). Richard K. Robinson. John Wiley & Sons, New York, US.

YEAR – III		19SMB51C
	FOOD SAFETY	SELF
SEMESTER - V	(For the students who are admitted in the year	STUDY
	2019 - 2020 and onwards)	COURSE
ELECTIVE		CREDITS – 2

Objective: To make the students understand basics and importance of food safety in food industry.

Course Outcomes:

Upon successful completion of the course, the student:

CO 1: acquires knowledge of Food safety

CO 2: understands the problem of Food Adulteration

CO 3: becomes familiar with Food safety operations

CO 4: describes Food Quality Indicators in foods

CO 5: gains knowledge of Food safety management

SEMESTER: V	COURSE CODE: 19SMB51C						RSE TI OD SAF		HOURS:	CREDITS:
COURSE OUTCOME	PROGRAMME OUTCOMES (PO)					S	OGRAM PECIFI COMES	C		SCORE OF
S	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3		
CO1	3.5	4	4	3.5	3.5	4	4	3.5	3	5.75
CO2	3.5	4	3.5	4	4	3.5	4	3.5	3	5.75
CO3	4	4	3.5	3.5	3.5	4	4	3.5	3	5.75
CO4	3.5	4	4	3	3.5	4	3.5	3.5	3	.62
CO5	4	3.5	.5 4 3.5 3.5 4 4 3.5				3	5.75		
	Mean Overall Score									5.72

Result: The score of this course is 3.72 (High)

Associatio	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
n					
Scale	1	2	3	4	5
Interval	0<=rating<=	1.1<=rating<=	2.1<=rating<=	3.1<=rating<=	4.1<=rating<=
	1	2	3	4	5
Rating	Very Poor	Poor	Moderate	High	Very High

(6

This Course is having **HIGH** association with Programme Outcomes and Programme Specific Outcomes.

Unit I hrs)

Introduction to Food- Carbohydrates, Protein, Fat, Fibre, Vitamins, Minerals- Effect of food processing on food nutrition- Introduction to Food safety – Factors affecting food safety

(Physical, Chemical and Microbial) – Safe Food – Definition – Importance of safe food – Personal Hygiene.

Unit II (6 hrs)

Food Adulteration – Definition – common adulterants- simple methods for detection of adulterants – Food additives- classification of food additives – Functional role of food additives – safety issues of food additives- Food Packaging and Labelling.

Unit III (6 hrs)

Food Processing & issues: Minimal processing Technologies, Hurdle Technology – Food preservation techniques - Pickling, drying, smoking, curing, canning, bottling, Jellying, modified atmosphere, pasteurization- Issues in food Processing – organic food, GM food, Irradiated food, Freeze dried food, Functional foods.

Unit IV (6 hrs)

Food Surveillance & Risk analysis: Food alerts - Recent food alert, Rapid Alert system for food - Traceability - objectives of traceability, steps for application of traceability - Food Product Recall - Role of Government agencies, Recall classification - Risk assessment.

Unit V (6 hrs)

Food safety management: Good Hygienic Practices (GHP) – Good Manufacturing Practices (GMP)- Food plant sanitation- Hazard Analysis Critical Control Point- Key elements and use of ISO 22000 – Quality management system- ISO 9001- Documentation structure of ISO 9001: 2008, Codex Alimentarius commission (CODEX).

Textbooks

- The training manual for Food Safety Regulators. Vol.I- Food Safety regulations and food safety management. 2010. Food safety and Standards Authority of India. New Delhi.
- The training manual for Food Safety Regulators. Vol.II- Food Safety regulations and food safety management. 2010. Food safety and Standards Authority of India. New Delhi.

Reference books

- Food Analysis: Theory and Practice. 2008. Pomeraz, Y. and MeLoari, C.E. CBS publishers and Distributor, New Delhi.
- Guide to Quality Management Systems for the Food Industry. 2006. Early, R. Blackie, Academic and Professional, London.
- Manuals of Food Quality Control. 2-Additives Contaminants Techniques. 2006. FAO.

YEAR – III	BIOTECHNOLOGY	19MB616
SEMESTER - VI	(For the students who are admitted in the year	HRS/WK - 5
CORE - 16	2019 - 2020 and onwards)	CREDITS - 4

Objective: To make the students understand the basic principles and techniques involved in gene technology

Course Outcomes:

Upon successful completion of the course, the student:

CO1: Understands the basics of recombinant DNA technology and cloning vectors.

CO2: Gains knowledge about the DNA and its amplification.

CO3: Acquires knowledge about enzymes and biofuels.

CO4: Understands the usage of plants and exploitation of them through genetic modification

CO5: Understands the usage of animals and exploitation of them through genetic modification, patenting and intellectual property rights.

SEMESTER		COURSE CODE:					COURSE TITLE:		HOURS	CREDITS	
:		19MB616					ECHNO	DLOG	:	: 4	
VI							\mathbf{Y}		5		
	PROGRAMME					PRO	OGRAN	IME			
COURSE	OUTCOMES (PO)				S	PECIFI	C	MEAN S	CORE OF		
OUTCOME				. ,		OUTO	OUTCOMES (PSO)			COs	
S	PO	PO	PO	PO	PO	PSO PSO PSO					
	1	2	3	4	5	1	2	3			
CO1	3	4	4	4	3.5	3	3.5	4	3.62		
CO2	3	4	4	4	4	3	4	3.5	3	.68	
CO3	4	3	3.5	3	3	4	3.5	3	3	.37	
CO4	3.5	4	4	4	4	3	4	4	3	.81	
CO5	3	4	4	4	4	4 4 4			3	.87	
		Me	Mean Overall Score								

Result: The score of this course is 3.67 (High)

Associatio	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
n					
Scale	1	2	3	4	5
Interval	0<=rating<=	1.1<=rating<=	2.1<=rating<=	3.1<=rating<=	4.1<=rating<=
	1	2	3	4	5
Rating	Very Poor	Poor	Moderate	High	Very High

This Course is having **HIGH** association with Programme Outcomes and Programme Specific Outcomes.

Unit - 1 (15 Hrs)
Definition and history – Recombinant DNA technology – Restriction endonucleases- Cloning vectors – pBR322, Cosmids - M13 phage vector and its applications – DNA ligation.

Unit - 2 (15 Hrs)

Chemical synthesis of DNA - DNA sequencing – Hybridisation techniques - Southern and Northern blotting techniques – Colony hybridization - PCR – Genomic library.

Unit - 3 (15 Hrs)

Enzyme technology – Enzyme immobilisation, products, Applications - Biofuel –Hydrogen gas as fuel from Microorganisms – Biodiesel.

Unit - 4 (15 Hrs)

Genetic engineering of plants – Electroporation – Gene gun –Particle bombardment- Ti plasmid vectors –Cauliflower mosaic virus as cloning vector - Applications- Transgenic plants –Insect resistant, Virus resistant plants, genetically modified foods.

Unit - 5 (15 Hrs)

Transgenic animals –Retroviral vector method, DNA microinjection method –Applications of r DNA technology – Recombinant produts –insulin, tPA, Interferons – Gene therapy – Patents – IPR.

Text Books

- Elements of Biotechnology. 1996. Gupta, P.K. Rastogi and Company, Meerut.
- Basic Biotechnology. 2001 (2nd edition). Ratledge C. and B. Kristiansen. Cambridge University press, United Kingdom.

Reference Books

- Principles of Gene Manipulation. 1994 (5th Edition).Old, R.W. and S.B.Primrose. Blackwell Science, Oxford.
- Molecular Biotechnology Principles and Applications of Recombinant DNA technology. 2010 (4th Edition). Glick, B. R., Pasternack J.J. and Patten C.L.ASM Press.
- Genetics- A Molecular Approach. 2004. Brown, T.A. Chapman Hall, London.
- Biotechnology Expanding Horizons. 2021. Singh, B.D. Kalyani Publishers, Ludhiana.

III B.Sc. ZOOLOGY	BIOFERTILIZER TECHNOLOGY	20EZ513A
SEMESTER - V	For the students admitted from the year	HRS/WK - 4
ELECTIVE	2018-19 onwards	CREDIT - 2

Objective: To enable the students learn the importance of biofertilzers and their production

- To enlighten the students with the knowledge of microbial inoculants
- To highlight the role of microorganisms in soil fertility and plant growth promotion
- To understand the process of isolation, production, formulation, method of application and quality control of bio-fertilizers

Course Outcomes:

Upon successful completion of the course, the student:

CO 1: will be able to appreciate the role of soil microorganisms

CO 2: will be able to describe various nitrogen fixing organisms

CO 3: will be able to explain different nutrient solubilizing bacteria

CO 4: will be able to gain knowledge on production of biofertilizers

CO 5: will be able to elaborate on the formulation of biofertilizers

SEMESTE		COU	RSE C	ODE:		TIT	LE OF	THE	HOURS	CREDIT
R:		20	EZ513	3 A]	PAPER	:	:	S:
V						BIOF	ERTIL	IZER	4	2
					TEC	HNOL	OGY			
	PROGRAMME					PRO	OGRAN	1ME	MEAN S	CORE OF
COURSE	(OUTC	COME	S (PO)	S	PECIFI	\mathbf{C}	(COs
OUTCOME					OUTCOMES					
S						(PSO)				
	PO	PO	PO	PO	PO	PSO	PSO	PSO		
	1	2	3	4	5	1	2	3		
CO1	3	2	5	5	4	4	4	5	4	4.0
CO2	2	2	5	5	3	3	5	5		3.7
CO3	2	2	4	5	4	3	5	5		3.7
CO4	4	2	4	4	4	3	4	4	3	3.6
CO5	4	2	4	4	4	3 5 5			(3.8
	Mean Overall Score									3.7

Associatio	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
n					
Scale	1	2	3	4	5
Interval	0<=rating<=	1.1<=rating<=	2.1<=rating<=	3.1<=rating<=	4.1<=rating<=
	1	2	3	4	5
Rating	Very Poor	Poor	Moderate	High	Very High

This Course is having **HIGH** association with Programme Outcomes and Programme Specific Outcomes.

Unit – 1 (12 Hrs)

SOIL MICROORGANISMS AND PLANTS: Important groups of soil microorganisms - Bacteria, Fungi, Algae, Protozoa, and Viruses - Microbial interactions in soil- positive and negative interactions - Rhizosphere - Phyllosphere - Spermosphere - R:S ratio; Biofertilizers - definition, types, importance of biofertilizers in agriculture; Plant Growth Promoting Rhizobacteria (PGPR) and their products - Cytokinin, Gibberellic acid, IAA, HCN and Siderophore.

Unit – 2 (12 Hrs)

NITROGEN FIXERS: Biological nitrogen fixation (BNF) - mechanism of BNF - Symbiotic nitrogen fixation - legume symbiosis- Rhizobium- characters and classification, nodulation- Free living nitrogen fixation - BGA, Azolla, Azospirillum, Azotobacter, Glucanoacetobacter and Frankia.

Unit – 3 (12 Hrs)

NUTRIENT SOLUBILIZERS AND MOBILIZERS: Solubilization of insoluble P, K, Zn and Si; Important solubilizing bacteria and fungi - Mycorrhizal bioinoculants - classification - Ectomycorrhizae - Endomycorhizae -VAM- Taxonomy of mycorrhizae - role of mycorrhizae.

Unit – 4 (12 Hrs)

PRODUCTION TECHNOLOGY: Isolation and mass multiplication of Nitrogen fixers (*Rhizobium*), P, K, Zn and Si solubilizing organisms (*Pseudomonas*), BGA, *Azollae* and Mycorrhizae - Carrier materials – selection, sterilization and preparation of carrier materials – fermenters.

Unit – 5 (12 Hrs)

FORMULATION OF BIOFERTILIZERS: Carrier based, gel based and liquid based biofertilizers - Quality control of different formulations — Problems and constraints in production- Methods of application and recommendations

Text Books

- Soil Microbiology.199 (4th Edition). Subba Rao N.S. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, India
- Agricultural Microbiology. 2002(2nd Edition).Bagyaraj D.J. and G. Rangasamy. Prentice Hall, New Delhi, India

Reference Books

- Microbes as Bio-fertilizers and their production Technology. 2015. Borkar S.G. Wood Head Publishers, New Delhi.
- Biofertilizers: Commercial production Technology and quality control. 2017. Hyma P. Random publishers, New Delhi
- Biofertilizer Manual. 2006. FNCA (Forum for Nuclear Cooperation in Asia) Biofertilizer Project Group. Published by Japan Atomic Industrial Forum.

II B.Sc.						
CHEMISTRY						
SEMESTER - IV						
NME						

FOOD PROCESSING TECHNOLOGY (For those students admitted in the year 2020 – 21 and onwards)

1111121 1401	
HRS/WK - 3	
CREDITS - 2	

NMEFT401

Objective: To make the students understand food processing and preservation methods

Course Outcomes:

Upon successful completion of the course, the student:

CO1:could understand the principles of food preservation and processing

CO2:could obtain knowledge about preservation of food at various temperatures

CO3:could acquire knowledge about food preservation by radiation

CO4:could comprehend government regulations and policies on food control

CO5:could gain knowledge about processed foods

SEMESTER	COURSE CODE:				TITLE OF THE		HOURS	CREDITS		
:	20AOFT301				PAPER:		:	:		
Ш				FOOD		3	2			
						PR	OCESSI	ING		
						TECHNOLOGY				
	PRO	OGRAMME OUTCOMES PROGRAMME MEAN SCORI				CORE OF				
COURSE		(PO)			SPECIFIC				COs	
OUTCOME		. ,				OUTCOMES (PSO)				
S	PO1	PO2	PO3	PO4	PO5	PSO	PSO	PSO		
						1	2	3		
CO1	4	3	4	4	3	4	3	3	3.50	
CO2	3	3	4	4	3	4	4	4	3.62	
CO3	4	4	3	4	3	4	4	3	3.62	
CO4	3	4	3	4	3	3	2	3	3.12	
CO5	3	4	4	4	3	4	4	4	3	3.75
Mean Overall Score								3.5		

Associatio	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
n					
Scale	1	2	3	4	5
Interval	0<=rating<=	1.1<=rating<=	2.1<=rating<=	3.1<=rating<=	4.1<=rating<=
	1	2	3	4	5
Rating	Very Poor	Poor	Moderate	High	Very High

This Course is having **HIGH** association with Programme Outcomes and Programme Specific Outcomes.

Unit-1 (9 Hrs)
Principles of preservation and processing of foods; classification of foods by ease of spoilage;

principles of food preservation, methods of food preservation – asepsis, removal of microorganisms, maintenance of anaerobic conditions.

Unit-2 (9 Hrs)

Preservation of food by use of high and low temperature - Factors affecting heat resistance (Thermal death time); heat penetration, heat treatments employed in processing foods, canned foods; low temperature storage, chilling and freezing, freezing of foods and its consequences.

Unit-3 (9 Hrs)

Preservation of foods by drying - Methods of drying, treatments of foods before drying, procedures after drying, intermediate moisture foods; Preservation of foods by additives - antimicrobial preservatives, added preservatives, developed preservatives; Preservation of foods by radiation - Ultra violet radiation, ionizing radiations, gamma rays and cathode rays; microwave processing.

Unit-4 (9 Hrs)

Food Adulteration; Food sanitation - Microbiology of the food product, good manufacturing practices, Hazard Analysis Critical Control Points, health of employees; Food control – enforcement and control agencies – international agencies (FAO, WHO, FDA & ISO); national agencies (Agmark, ISI, BIS).

Unit-5 (9 Hrs)

Processed foods – Jam, canned fruit juices, pickles, Bread, Seafoods, Dairy products - Market milk, Special milk, Cream, Butter, Ice Cream, Cheese, Dried milk products; Packaging of milk and milk products.

Text Book:

- Food Microbiology. 5th Edition, 2013. William C. Frazier, Dennis C. Westhoff, N. M. Vanitha. McGraw-Hill Education (India).
- Food Microbiology, 4th Edition, 2015. Adams, M.R., Moss, M.O and McClure, P. J. RSC Publication, CPI Group (UK) Ltd., Croydon, UK.

Reference Books:

- Outlines of Dairy Technology. 1991. Sukumar De. Oxford University Press.
- A First Course in Food Analysis. 1999. A.Y. Sathe. New Age International (P) Limited, Publishers, New Delhi.
- The Microbiological Safety and Quality of Food. 2000. Barbara M. Lund, Baird-Parker, Gould G.W. An Aspen publication, Maryland, U.S.A.