II M.SC (CS)	CLOTID COMPLIENC	PCS913P
SEMESTER – III	CLOUD COMPUTING	HRS/WK – 4
CORE – II		CREDIT – 3

Objective:

To impart the basic concepts of Cloud Computing and its applications.

COURSE OUTCOMES (COs):

CO1: To understand the basic concepts of Cloud Computing

CO2: Understand the concept of Infrastructure as a service in cloud

CO3: Ability to Design & develop backup strategies for cloud data based on features.

CO4: Gain idea about the Cloud with Map Reducing concept.

CO5: Ability to understand the concept of security and key components of AWS

Relationship Matrix Course Outcome, Programme Outcome and Programme Specific Outcome

SEMESTER III		COI	URSE (CODE:PC	S913P			OURSE TI' UD COMP		HOURS:	CREDITS:		
COURSE OUTCOME	PRO	OGRAN	име о	UTCOM	E(PO)	PROG	RAMME	SPECIFIC	MEAN SCORE OF CO				
	PO	PO	PO	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5			
	1	2	3								3.0		
CO1	3	3	3	2	4	3	3	2	3	4			
CO2	3	4	3	4	4	3	3	2	3	4	3.3		
CO3	3	3	4	3	3	3	3	2	4	3	3.1		
CO4	4	3	4	3	3	3	3	3	2	3	3.1		
CO5	3	3	4	3	4	3	4	3	3	4	3.4		
	Mean Overall Score										3.2		

Result: The Score of this Course is 3.2(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

This Course is having **High** association with Programme Outcome and Programme Specific Outcome

UNIT -I [12Hrs]

INTRODUCTION TO CLOUD COMPUTING: Roots of Cloud Computing - Layers and Types of Cloud - Features of a Cloud - Infrastructure Management- Cloud Services - Challenges and Risks - Migrating into a Cloud: Introduction - Broad Approaches - Seven Step Model - Integration as a Service - Integration Methodologies - SaaS.

UNIT-II [12Hrs]

INFRASTRUCTURE AS A SERVICE: Virtual Machines - Layered Architecture - Life Cycle - VM Provisioning Process - Provisioning and Migration Services - Management of Virtual Machines Infrastructure - Scheduling Techniques - Cluster as a Service - RVWS Design - Logical Design - Cloud Storage - Data Security in Cloud Storage - Technologies.

UNIT- III [12Hrs]

PLATFORM AND SOFTWARE AS A SERVICE: Integration of Public and Private Cloud - Techniques and Tools - Framework Architecture -Resource Provisioning Services - Hybrid Cloud - Cloud Based Solutions for Business Applications - Dynamic ICT Services - Importance of Quality and Security in Clouds - Dynamic Data Center - Case Studies - Workflow Engine in the Cloud - Architecture - Utilization - Scientific Applications for Cloud - Issues - Classification - SAGA - Map Reduce Implementation.

UNIT- IV [12Hrs]

MONITORING AND MANAGEMENT: An Architecture for Federated Cloud Computing - Use Case - Principles - Model - Security Considerations - SLA Management - Traditional Approaches to SLO - Types of SLA - Life Cycle of SLA - Automated Policy - Performance Prediction of HPC - Grid and Cloud - HPC Performance Related Issues.

UNIT- V [12Hrs]

APPLICATIONS: Best Practices in Architecting Cloud Applications in the AWS Cloud - Massively Multilayer Online Game Hosting on Cloud Resources - Building Content Delivery Networks using Clouds – Resource cloud Mashups

TEXTBOOK

1. "Cloud Computing Principles and Paradigms", Rajkumar Buyya, James Broberg and AndrzejGoscinski, Wiley Publications, 2011

REFERENCE BOOKS

- 1. "Cloud Application Architectures" George Reese, Shroff O'reilly, ISBN: 8184047142, 2009.
- 2. "Cloud Computing Web Based Applications that change the way you work and collaborateonline", Michael Miller Pearson Education, 2009.

II M.Sc (C.S)		19EPCS35A
SEMESTER -III	CYBER FORENSICS	HRS/WK-4
Elective – 4B		CREDIT-3

Objectives:

- ❖ To Explain the responsibilities and liabilities of a computer forensic investigator
- ❖ To collect digital evidences from a crime scene without damaging it or risking it becoming inadmissible in a court of law

COURSE OUTCOMES (COs):

After learning this course, the students should be able to expose

CO1: Ability to gain knowledge on basic Forensics, its tasks, cybercrime laws

CO2: Ability to restrict fromcrimes, threat and fraud by learning social ethics

CO3: Ability to learn about cyber criminals, crime fighters and understanding investigators

CO4: Ability to understand local, state, national, international laws and their procedures

CO5: Ability to understand how to preserve and recover digital evidence.

Relationship Matrix Course Outcome, Programme Outcome and Programme Specific Outcome

SEMESTER		COUR	SE CODE	: 19EPCS	35A	COURSE TITLE:CYBER FORENSICS					HOURS:	CREDITS:
III									4	3		
COURSE OUTCOME	I	PROGRAMME OUTCOME(PO) PROGRAMME SPECIFIC OUTCOME(PSO)										SCORE OF CO
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5		
CO1	4	4	4	4	4	4	5	3	2	5		3.9
CO2	4	4	4	4	4	4	5	4	3	5		4.1
CO3	4	4	4	4	4	4	5	4	3	5		4.1
CO4	4	4	4	4	4	4	5	3	3	5		4.0
CO5	4	4	4	4	4	4	5	3	2	5		3.9
	Mean Overall Score										,	4.0

Result: The Score of this Course is 4.0(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

This Course is having **High** association with Programme Outcome and Programme SpecificOutcome

UNIT-1 [Hrs 11]

INTRODUCTION TO COMPUTER FORENSICS: Computer forensics definitions - Computers' roles in crimes- Computer forensics tasks-Prepare for an investigation- Collect evidence -Preserve evidence -Recover evidence- Document evidence Challenges associated with making "cybercrime" laws-Jurisdictional issues.

UNIT-1I [Hrs 12]

COMPUTER CRIMES: Crimes -Violent crimes where computers are used include terrorism-assault threat- stalking- child pornography -Nonviolent crimes where computers are used include trespass- theft- fraud- vandalism -Where evidence often resides for different types of crimes -Address books- chat logs- e-mail- images- movies- Internet browser history- etc.

UNIT-1II [Hrs 12]

COMPUTER CRIMINALS: Using evidence to create a crime timeline - Modify Access Create (MAC) dates associated with files- Problems with using these (they don't change in a logical fashion in some cases)-Criminals and crime fighters- Understanding "cyber criminals" and their victims -Understanding "cyber investigators.

UNIT-1V [Hrs 13]

BUILDING A CYBERCRIME CASE: Bodies of law- Constitutional law- Criminal law- Civil law- Administrative regulations- Levels of law- Local laws- State laws- Federal laws- International laws- Levels of culpability- Intent –Knowledge- Recklessness- Negligence- Level and burden of proof- Criminal versus civil cases- Vicarious liability- Laws related to computers –CFAA- DMCA- CAN Spam- etc.

UNIT-V [Hrs 12]

PRESERVING AND RECOVERING DIGITAL EVIDENCE: Disk imaging -Creating a message digest or hash code for a disk -Where data hides; deleted and erased data -File systems -Files-Modify Access Create (MAC) dates to establish time line -File headers - info about file type.

TEXT BOOK:

1. "Guide to Computer Forensics and Investigations", Bill Nelson, Amelia Phillips, Christopher Steuart, - 4th edition, Course Technology- Cengage Learning, 2010

REFERENCES BOOK:

1. "Computer Crime Scene Investigation", John R. Vacca, Computer Forensics-2nd Edition, Charles River Media, 2005

I M.Sc (C.S)		19EPCS35B
SEMESTER -III	E -BUSINESS	HRS/WK-4
ELECTIVE – 4C		CREDIT-3

Objectives:

- ❖ This course introduces students to various aspects and models for E-Business.
- ❖ At the end of the course, students should have an understanding of the impacts which E-Business is having on society, markets and commerce.
- ❖ Students should also become aware of the global nature of E-commerce and how traditional means of doing business will need to change in the electronic age.

COURSE OUTCOMES (COs):

CO1: Essential knowledge on Business Process Model

CO2. Learn the working environment functions for E Market places

CO3. Learn about the E Business Applications of Outsourcing Industry

CO4. Acquired an idea about employment and job Market online different field and Industries

CO5. Understood the challenges and dynamics of each E-Learning process Education and Industries to help better manage operations

Relationship Matrix Course Outcome, Programme Outcome and Programme Specific Outcome

SEMESTER III	CODI	COU E:19EP					-	OURSE T			HOURS:	CREDITS:
COURSE OUTCOME							RAMME	SPECIFI	C OUTCO	ME(PSO)	MEAN SCORE OF CO	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5		
CO1	4	4	5	5	4	4	4	4	3	3	4.0	
CO2	4	4	3	4	4	4	4	3	3	4	3.7	
CO3	4	4	3	3	4	4	4	3	4	4	3.9	
CO4	4	4	3	3	4	4	4	3	4	4	3.7	
CO5	4	3	4	4	3	4	4	3	4	4	3.7	
	Mean Overall Score										3.8	

Result: The Score of this Course is 3.8(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

This Course is having **High** association with Programme Outcome and Programme SpecificOutcome

UNIT-I [Hrs 12]

INTRODUCTION TO E-BUSINESS AND E-COMMERCE- Define the E-Commerce and E-Business - Define E-Commerce Types of EC transactions - Define E-Business Models - Internet Marketing and E-Tailing - Elements of E-Business Models- Explain the benefits and limitations of E-Commerce.

UNIT-II [Hrs 12]

E-MARKETPLACES- Structures, Mechanisms, Economics, and Impacts- Define E-Marketplace and Describe their Functions- Explain E-Marketplace types and their features - Describe the various types of auctions and list their characteristics - Discuss the benefits, limitations and impacts of auctions - E-Commerce in the wireless environment - Competition in the DE and impact on industry

UNIT- III [Hrs 11]

E-BUSINESS APPLICATIONS- E-Procurement and E-Payment Systems - Integration and E-Business suits - ERP, E-SCM, CRM - E-Procurement definition, processes, methods and benefits - E-Payment - Discuss the categories and users of smart cards - Describe payment methods in B2B EC.

UNIT-IV [Hrs 12]

THE IMPACT OF E-BUSINESS ON DIFFERENT FIELDS AND INDUSTRIES - E-Tourism - Employment and Job Market Online - Online Real Estate - Online Publishing and E-Books - Banking and Personal Finance Online - On-Demand Delivery Systems and E-Grocers - Online Delivery of Digital Products, Entertainment, and Media

UNIT-V [Hrs 13]

E-LEARNING AND ONLINE EDUCATION - Define electronic learning-Discuss the benefits and drawbacks of E-Learning.

THE E-LEARNING INDUSTRY- Discuss E-Content development and tools-Describe the major technologies used in E-Learning- Discuss the different approaches for E-Learning Delivery-How E-Learning can be evaluated. Future Trends-e-Government- Definition of E-Governments-Implementation-E-Government Services- Challenges and Opportunities- E-Government Benefit.

TEXT BOOK:

1. "Electronic Commerce: A Managerial Perspective", Turban, E. et al., -Prentice Hall 2008.

REFERENCE BOOKS:

- 1. "Electronic Business and Electronic Commerce Management", Dave Chaffey, 2nd edition, Prentice Hall, 2006
- 2. "E-Learning Tools and Technologies", Horton and Horton-Wiley Publishing, 2003

II-MSC (CS)
SEMESTER – III
CORE –10

BASICS OF MACHINE LEARNING For the students admitted from the year 2021

21PCS912
HRS/WK – 4
CREDIT – 4

Objectives:

- ❖ This course introduces students to understand fundamentals of Machine Learning.
- ❖ At the end of the course, students should have an understanding of Machine Learning and its various importance in Research.
- Students will also be aware of the utilization of Machine Learning in building dynamics of Knowledge.

COURSE OUTCOMES (COs):

- **CO1:** Essential knowledge on Machine Learning.
- CO2. Learn the Basics of Machine Learning and its concepts.
- **CO3**. Acquire the fundamental knowledge on building Machine Learning programs.
- **CO4**. Develop an idea about Machine Learning Algorithms
- CO5. Understand and develop Research Application using Machine Learning.

Relationship Matrix Course Outcome, Programme Outcome and Programme Specific outcome

SEMESTER III			RSE CO 21PCS9			E	_	OURSE T	ITLE: NE LEARN	HOURS:	CREDITS:	
COURSE OUTCOME	PRO	GRAM	IME OU	JTCOMI	E(PO)	PROG	RAMME	SPECIFIC	C OUTCO	MEAN SCORI	E OF CO	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5		
CO1	4	4	5	5	4	4	4	4	3	3	4.0	
CO2	4	4	3	4	4	4	4	3	3	4	3.7	
CO3	4	4	3	3	4	4	4	3	4	4	3.9	
CO4	4	4	3	3	4	4	4	3	4	4	3.7	
CO5	4	3	4	4	3	4	4	3	4	4	3.7	
	Mean Overall Score										3.8	

Result: The Score of this Course is 3.8(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

This Course is having **High** association with Programme Outcome and Programme Specific Outcome

UNIT -I [12Hrs]

INTRODUCTION: Introduction to Machine Learning – Importance of Machine Learning in Research - Applications of Machine Learning – Categories of Machine Learning Techniques – Trends in Machine Learning.

UNIT- II [12Hrs]

SUPERVISED LEARNING: Introduction to Supervised Techniques - Algorithms for Supervised Learning - k-Nearest Neighbors - Decision Trees - Naive Bayes-Logistic Regression-Support Vector Machines.

UNIT- III [13Hrs]

UNSUPERVISED LEARNING: Introduction to Unsupervised Techniques - Algorithms for Unsupervised Learning- K-Means Clustering Algorithms – Hierarchical Clustering Algorithms

– Difference between Supervised and Unsupervised Algorithms.

UNIT- IV [11Hrs]

ARTIFICIAL NEURAL NETWORKS: Multilayer Perceptron - The Perceptron - Training a Perceptron - Learning Boolean Functions - MLP as a Universal Approximator - Back propagation Algorithm - Nonlinear Regression - Two-Class Discrimination - Multiclass Discrimination - Multiple Hidden Layers.

UNIT- V [12Hrs]

DESIGN AND ANALYSIS OF MACHINE LEARNING EXPERIMENTS: Guidelines for Machine Learning Experiments - Cross-Validation and Resampling Methods - Measuring Classifier Performance - Interval Estimation - Hypothesis Testing - Assessing a Classification Algorithm's Performance - Comparing Multiple Algorithms: Analysis of Variance.

TEXT BOOK:

1. "Introduction to Machine Learning", Ethem Alpaydın, Second Edition, The MIT Press, 2010.

REFERENCE BOOKS:

- 1. "Machine Learning for Absolute Beginners", Oliver Theobald, Second Edition, OliverTheobald Publications, 2017.
- 2. Andreas C. Müller & Sarah Guido, "Introduction to Machine Learning with Python", O'ReillyPublications, 2017.