YEAR - I	MICROBIAL ECOLOGY	21PMB14
SEMESTER - I	(For those students admitted in the year 2021 –	HRS/WK - 4
CORE - 4	22 and onwards)	CREDITS - 4

Objective: To make the students understand the importance of microorganisms in ecology and their applications.

Course Outcomes:

Upon successful completion of the course, the student:

CO1: Gains knowledge about the basics of microbial ecology

CO2: Acquires knowledge about microbial interactions in various ecosystems

CO3: Understands the role of microorganisms in cycling of nutrients and biodegradation of pollutants

CO4: Gains knowledge about role of microorganisms in wastewater treatment

CO5: Acquires knowledge about quantitative studies and microbial applications in environment

SEMESTER:	CO	COURSE CODE:			COURSE TITLE:				HOURS:	CREDITS:
I		21PN	1B14		MICROBIAL ECOLOGY			4	4	
	P	ROGR	AMM	E	PROC	GRAMN	1E SPE	CIFIC		
COURSE	JO	JTCOMES (PO)			O	UTCOM	IES (PS	O)	MEAN S	CORE OF
OUTCOMES	PO1	PO2	PO3	PO4	PSO1	PSO2	PSO3	PSO4	(COs
CO1	4	3	4	4	4	4	3	3	3	5.62
CO2	4	4	4	3	4	4	3	4	3	5.75
CO3	4	3	4	3	4	4	4	3	3	.62
CO4	4	4	4	3	3	4	4	4	3.75	
CO5	4	4	4	3	4	4	3	4	3	5.75
Mean Overall Score							3	5.70		

Result: The score of this course is 3.7 (High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

This Course is having **HIGH** association with Programme Outcomes and Programme Specific Outcomes.

Unit - 1 (12 Hrs)

Microbial communities – terminology, ecological hierarchy, ecological niche; Microbial colonization - energy flow in ecosystem - Environmental factors affecting microbial populations; Adaptation of microorganisms in various ecosystem – Atmosphere - Microbiology of air,droplet nuclei, aerosols, enumeration of microorganisms in air, air sanitation, Laboratory hazards, airborne diseases.

Unit - 2 (12 Hrs)

Interaction of microorganisms with their physical and chemical environments; marine ecosystem - mangroves, estuaries, deep seas and hydrothermal vents; fresh water ecosystem - lakes, rivers, ponds; terrestrial ecosystem - rock and soil, prairie, forest, tundra; extreme environments - hotsprings, glaciers and acid-mine drainage; interaction of microorganisms with plants, animals and microorganisms.

Unit – 3 (12 Hrs)

Biogeochemical cycles - carbon, nitrogen, sulfur, iron, and phosphorus cycles; adaptation of microorganisms to toxic pollutants; biodegradation of xenobiotics (pesticides, heavy metals, hydrocarbons) – mechanisms.

Unit – 4 (12 Hrs)

Waste water treatment - primary, secondary (anaerobic and aerobic - trickling, activated sludge, oxidation pond), Sludge digestion, Disposal; Drinking water treatment – chlorination; Microbiological standards of water; Water pollution - indicators of water pollution - BOD – COD - techniques for the study of water pollution; Waterborne diseases.

Unit – 5 (12 Hrs)

Quantitative microbial ecology - Culture based methods and molecular based methods; Composting – landfills; Bioleaching of metals; Biodeterioration of paint, textile and leather; biofouling; Biofilms; Microbial enhanced oil recovery.

Text Book

 Microbial Ecology - Fundamental and Applications. 4th Edition, 1998. Atlas & Bartha, Benjamin/ Curmmings Publishing Company, Inc., California

Reference Books

- Environmental Microbiology. 1981. Grant W. D. and Long P.E. Blackie and Son Ltd,, Glasgow.
- Aquatic Microbiology. 2nd Edition, 1980. Rheinheimer, G. Jhon Wiley & Sons. New York
- Environmental Aspects of Microbiology. 1996. Joseph C. Daniel. Brightsun Publications, Chennai.
- Environmental Microbiology. 2nd Edition, 2016. Mitchell, R and J.I. DongGu. John Wiley, New York.

YEAR – I	LAB COURSE – I	21PMBP11
SEMESTER - I	(For those students admitted in the year 2021	HRS / WK - 8
PRACTICAL	– 22 and onwards)	CREDITS - 4

EXPERIMENTS IN BASIC MICROBIOLOGY

- 1. Gram staining
- 2. Negative staining
- 3. Capsule staining
- 4. Spore staining
- 5. Hanging drop technique
- 6. Catalase test
- 7. Oxidase test
- 8. Indole test
- 9. Methyl red test
- 10. Voges proskauer test
- 11. Citrate utilization test
- 12. Urease test
- 13. Triple sugar iron agar test
- 14. Lysine iron agar test
- 15. Nitrate reduction test
- 16. Slide culture for fungi

EXPERIMENTS IN IMMUNOLOGY

- 1. Separation of serum
- 2. Separation of plasma
- 3. ABO blood grouping by reverse grouping
- 4. ASO semi quantitative test
- 5. Single radial immunodiffusion
- 6. Double immuno diffusion
- 7. Rocket immuno electrophoresis
- 8. Serum electrophoresis
- 9. Isolation of lymphocytes
- 10. Dot ELISA

EXPERIMENTS IN ENVIRONMENTAL MICROBIOLOGY

- 1. Enumeration of total coliform by MPN method
- 2. Enumeration of faecal coliform by MPN method
- 3. Membrane filter technique
- 4. Biochemical oxygen demand
- 5. Nitrogen cycle:
 - a. Ammonification
 - b. Nitrification
 - c. Denitrification

EXPERIMENTS IN BIOSTATISTICS

- 1. Testing the difference between means of two samples (independent)
- 2. Testing the difference between means of two samples (dependent)
- 3. Chi square test for independence of attributes
- 4. F test (or) the variance ratio test
- 5. One way analysis of variance (anova)
- 6. Randomized block design (rbo)
- 7. Latin square design(lsd)

EXPERIMENTS IN BIOINFORMATICS

- 1. Pairwise alignment
- 2. Blast

YEAR – I	METHODS IN BIOLOGY	21EPM26A
SEMESTER - II	(For those students admitted in the year 2021	HRS / WK - 3
ELECTIVE – IV A	– 22 and onwards)	CREDIT - 2

Objective:

To make the students familiar with techniques routinely used in bio sciences

Course Outcomes:

Upon successful completion of the course, the student:

CO1: acquires the knowledge about the study of advanced techniques in biology

CO2: gains the knowledge about the biophysical techniques used to detect functional structure of biological samples

CO3: gets insight knowledge about radioisotopes and its application

CO4: gets depth insights about the electrophysiological methods.

CO5: acquires the knowledge about the animal population and migration through remote sensor technique.

SEMESTER:	COURSE CODE:			COURSE TITLE:				HOURS:	CREDITS:	
II		21EP	M26A		MET	HODS I	N BIOL	OGY	3	2
	PROGRAMME			PROGRAMME SPECIFIC						
COURSE	JO	JTCON	MES (I	(ES (PO) OUTCOMES (PSO) MEAN SCOR			OUTCOMES (PSO)		CORE OF	
OUTCOMES	PO1	PO2	PO3	PO4	PSO1	PSO2	PSO3	PSO4	(COs
CO1	4	3.5	4	3.5	4	4	4	4	3	.87
CO2	3.5	3.5	4	4	4	3.5	3.5	4	3	5.75
CO3	4	3.5	4	4	3.5	4	4	4	3	5.56
CO4	3	3.5	3.5	4	4	3	3	3.5	3	.87
CO5	3.5	3.5	3.5	3.5	4	3.5	3	3.5	3	5.50
Mean Overall Score								3	5.71	

Result: The score of this course is 3.71 (High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

This Course is having **HIGH** association with Programme Outcomes and Programme Specific Outcomes.

Unit 1 (9 Hrs)

Biophysical methods: Analysis of biomolecules using UV/visible, fluorescence, atomic force microscope, circular dichroism, NMR and ESR spectroscopy

Unit 2 (9 Hrs)

Biophysical methods: structure determination using X-ray diffraction, X-ray photoelectron spectroscopy; analysis using light scattering, different types of mass spectrometry, Optical Tweezers

Unit 3 (9 Hrs)

Radiolabeling techniques: Propertiesofradioisotopes, their detection and measurement; incorporation of radioisotopes in biological tissues and cells, molecular imaging of radioactive material, safety guidelines for removal of radioactive wastes.

Unit 4 (9 Hrs)

Electrophysiological methods: Single neuron recording, patch-clamp recording, ECG, Brain activity recording, lesion and stimulation of brain, pharmacological testing, PET, MRI, fMRI, CAT

Unit 5 (9 Hrs)

Methods in field biology: Methods of estimating population density of animals and plants, ranging patterns through direct, indirect and remote observations, sampling methods in the study of behavior, habitat characterization-ground and remote sensing methods.

Text Book

• Biophysical Chemistry Principles and Techniques, (4th Edition) Upadhyay, Upadhyay and Nath, 2009, Himalaya Publications, India

Reference Book

- A Biologists guide to Principles and Techniques of Practical Biochemistry, (8th Edition), Wilson and Walker, 2018, Cambridge University Press.
- Physical Biochemistry, (2nd Edition) David Freifelder, 1982, W. H. Freeman and Company, New York.
- Modern Experimental Biochemistry (3rd Edition) Boyer, R. 2000, Addison Wesley Longman.
- Fundamentals and Techniques of Biophysics and Molecular Biology, (1st edition), Pranavkumar, 2016, Pathfinder Publication, New Delhi.
- Biophysics Tools and Techniques, (1st edition), Mark C. Leake, 2016, CRC press. UK

YEAR - II	SOIL AND AGRICULTURAL	21PMB31
SEMESTER - III	MICROBIOLOGY	HRS/WK - 4
CORE - 9	(For those students admitted in the year 2021 – 22 and onwards)	CREDITS - 4

Objective: To make the students understand the importance of microbiology in the field of soil and agriculture

Course Outcomes:

Upon successful completion of the course, the student:

CO1: Understands the soil properties and the role of soilborne microbes

CO2: Understands the cyclical movements of important plant nutrients in the soil

CO3: Gains knowledge about different biofertilizers and their production

CO4: Understands different biopesticides and their applications

CO5: Knows important plant diseases of India and their control

SEMESTER:	COURSE CODE:			COURSE TITLE:				HOURS:	CREDITS:	
III		21PN	AB31			SOIL	AND		4	4
					A	GRICU	LTURA	L		
				\mathbf{M}	IICROB	IOLOG	Ϋ́			
	P	PROGRAMME			PROGRAMME SPECIFIC					
COURSE	JO	JTCON	MES (F	PO)	O	UTCOM	IES (PS	O)	MEAN SCORE OF	
OUTCOMES	PO1	PO2	PO3	PO4	PSO1	PSO2	PSO3	PSO4		COs
CO1	4	3.5	4	3.5	4	4	4	4	3	3.87
CO2	3.5	3.5	4	4	4	3.5	3.5	4	3	3.75
CO3	3.5	3	4	3.5	3.5	4	3.5	3.5	3	3.56
CO4	3	3.5	3.5	3.5	4	3.5	3	3.5	3	3.43
CO5	3.5	3.5	3.5	4	4	3.5	3	4	3	3.62
Mean Overall Score								3	3.64	

Result: The score of this course is 3.64 (High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=	1.1<=rating<=	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating
	1	2			<=5
Rating	Very Poor	Poor	Moderate	High	Very High

This Course is having **HIGH** association with Programme Outcomes and Programme Specific Outcomes.

Unit -1 (12Hrs)

Soil- Chemical and physical properties of soil -Types-Soil as a habitat for microbes - Microflora of various soil types-Influence of soil and environmental factors on soil microflora - Role of microorganisms in soil fertility- Interaction among soil microorganisms- Interaction between plants and microorganisms - Rhizosphere, Phyllosphere, Spermosphere; Effect of soil borne microbes on plant (Harmful and Beneficial) - Plant Growth Promoting Rhizobacteria (PGPR), Mechanisms of plant growth promotion by PGPR.

Unit -2 (12Hrs)

Microorganisms in soil process - Carbon cycle, Nitrogen cycle, Iron cycle, Phosphorus cycle - Nitrogen fixation - Types - symbiotic, free living and associative symbiotic - Mechanism of nitrogen fixation- Genetics of nitrogen fixation- Solubilization of nutrients (P, K and Zn) - Mobilization of nutrients (Mycorrhizae).

Unit - 3 (12Hrs)

Biofertilizers - Definition, types and importance - Standards and quality control- Carrier materials- Isolation and mass multiplication of bacterial biofertilizers (*Rhizobium*, *Azospirillum*, *Azotobacter*, *Pseudomonas*) - Isolation and mass multiplication of fungal biofertilizer (VAM) - Isolation and mass multiplication of algal biofertilizers (BGA, *Azolla*)- Applications - National and regional biofertilizers production and development centers-Advantages and disadvantages of biofertilizers.

Unit -4 (12Hrs)

Problems associated with chemical pesticides; Biocontrol agents – Definition, Types and importance, Examples and mechanisms of controlling – *Bacillus thuringiensis*, *Pseudomonas fluorescence*, *Trichoderma viridae*, NPV, Entamopathogenic protozoa and Entamopathogenic nematodes - Production and applications; Advantages and disadvantages; Microbial genes in creation of pest resistant plants.

Unit -5 (12Hrs)

Microbial Diseases of plants - disease symptoms, - mode of entry of pathogens — factors affecting disease incidence - control measures - Examples -Bacterial Diseases: Bacterial Blight of Paddy, Citrus Canker - *Mycoplasma* Diseases: Rice Yellow Dwarf, Grassy shoot of sugarcane, Fungal Diseases: Late Blight of Potato, Downy Mildew of Maize, Rust of Wheat, Wilt of Cotton, Leaf Spot of Turmeric, Blast disease of Rice, Mango Anthracnose - Viral Diseases: Leaf Curl of Tomato, Yellow Vein Mosaic of Bhendi — Nematode Diseases: Ear Cockle of Wheat, root knot of vegetables.

Text Books

- Soil Microbiology Soil microorganisms and Plant growth. 4th Edition, 2017. Subba Rao, N.S. Oxford & IBH publishing Co. Pvt. Ltd.
- Agricultural microbiology. 2nd Edition, 2004. Rangaswami, G., and Bhagyaraj, D.J. Prentice Hall of India, New Delhi.

Reference Books

- Plant diseases. 10th Edition. Singh, R.S. 2017. Medtech, New Delhi
- Diseases of crop plants in India. 1998. 4th Edition. G. Rangaswami, A. Mahadevan. Prentice Hall of India Private Ltd., New Delhi.
- A Text book of Microbiology. 2013. Dubey, R.C., and Maheshwari, D.K. S Chand Publishing, New Delhi.
- Biofertilizers: Commercial production Technology and quality control. Hyma, P. 2017. Random publishers. New Delhi.
- Biofertilizer Technology. 2019. Ramanathan, N. Kalyani Publishers, New Delhi.

YEAR – II	LAB COURSE – III	21PMP33
SEMESTER - III	(For those students admitted in the year 2021	HRS / WK - 8
PRACTICAL	– 22 and onwards)	CREDITS - 4

EXPERIMENTS IN AGRICULTURAL MICROBIOLOGY

- 1. Enumeration of bacteria from soil
- 2. Enumeration of fungi from soil
- 3. Rhizobium Isolation
- 4. Rhizosphere effect
- 5. Isolation and Enumeration of Phosphate utilizing bacteria

EXPERIMENTS IN MICROBIAL BIOTECHNOLOGY

- 1. Isolation of Actinomycetes
- 2. Isolation and enumeration of Azospirillum from soil
- 3. Isolation and enumeration of Azotobacter from soil
- 4. Carrier based inoculum preparation for biofertilizer
- 5. Immobilization of Amylase enzyme
- 6. Sterility test

EXPERIMENTS IN FOOD MICROBIOLOGY

- 1. MBRT
- 2. Resazurin Test
- 3. Isolation of Vibrio from marine food

EXPERIMENTS IN MOLECULAR BIOLOGY

- 1. Agarose gel electrophoresis
- 2. Isolation of Bacterial Genomic DNA
- 3. Isolation of Plasmid DNA
- 4. Preparation of acetate buffer
- 5. Lowry's method for protein estimation

YEAR - II	MICROBIAL BIOTECHNOLOGY	21PMB41
SEMESTER - IV	(For those students admitted in the year 2021 –	HRS/WK - 4
CORE - 13	22 and onwards)	CREDITS - 4

Objective: To make the students familiar with applications of microbiology

Course Outcomes:

Upon successful completion of the course, the student:

CO1: learns about Microbial enzyme technology and Biotransformation

CO2: becomes familiar with the microbial products of industrial fermentations

CO3: acquires knowledge about the use of microorganisms in the production of biopolymers

CO4: gains knowledge about biotechnological applications available for environmental

issues

CO5: understands the possibilities of entrepreneurship in microbiology

SEMESTER:	COURSE CODE:			COURSE TITLE:			HOURS:	CREDITS:		
IV	21PMB41			MICROBIAL			4	4		
					BI	OTECH	NOLO			
	PROGRAMME				PROGRAMME SPECIFIC					
COURSE	OUTCOMES (PO)			OUTCOMES (PSO)				MEAN SCORE OF		
OUTCOMES	PO1	PO2	PO3	PO4	PSO1	PSO2	PSO3	PSO4	COs	
CO1	3.5	3.5	4	3.5	4	3	4	3	3.56	
CO2	4	4	3.5	4	3	3.5	3.5	4	3.69	
CO3	3.5	3.5	4	3	4	3.5	4	3.5	3.63	
CO4	4	4	3.5	3	3.5	4	3	3	3.50	
CO5	4	3.5	4	3	4	3.5	4	3	3	.63
Mean Overall Score								3.60		

Result: The score of this course is 3.60 (High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

This Course is having **HIGH** association with Programme Outcomes and Programme Specific Outcomes.

Unit - 1 (12 Hrs)

Introduction and Basics: History and Scope of Microbial Biotechnology – Enzyme technology – production of microbial enzymes (amylase, pectinases, cellulase) - Enzyme immobilization, Products, Applications; Biotransformation.

Unit - 2 (12 Hrs)

Important industrial fermentations - Amino acid production (glutamic acid and lysine) - Production of antibiotics (penicillin, tetracycline) - Production of Vitamins (riboflavin, cyanocobalamin) - Production of alcohol (Ethanol) and beverages (beer and wine) - Organic

acids - lactic acid, citric acid.

Unit - 3 (12 Hrs)

Biopolymers and Biomass: Microbial production of carbohydrates, Xanthan gum and polyester (PHAs, higher alkanes and methanol); Single cell proteins; Microbial whole-cell bioreporters; Biosensors - Types and Applications; Role of microorganisms in Nanotechnology.

Unit - 4 (12 Hrs)

Environmental Biotechnology: Biotechnological methods for environmental monitoring – Recalcitrant xenobiotics - Biodegradation (hydrocarbons, pesticides, herbicides); Bioremediation – contaminated soils and water; marine oil pollutants; Microbes in mining, Ore leaching.

Unit - 5 (12 Hrs)

Entrepreneural Aspects: Qualities of an entrepreneur, Factors influencing entrepreneurship; Biogas production; Biofuels; Mushroom cultivation; *Spirulina* cultivation; *Azolla* cultivation; Microbial pigments; bacterial and algal carotenoids.

Text Book

• Elements of Biotechnology. 1996. Gupta, P.K. Rastogi and Company, Meerut.

Reference Books

- Concepts in Biotechnology. 1996. Balasubramanian, D., C.F.A. Brycee., K. Dharmalingam, J. Green and K. Jayaraman. Universities Press (India) Limited, Hyderabad.
- Molecular Biotechnology. Indian Edition, 2002. Glick, B.R. and J.J. Pasternack. Panima Publishing Corporation, New Delhi.
- Microbial Biotechnology. 1995. Alexander N. Glazer and Hiroshi Nikaido. W. H Freeman and Company.
- Biotechnology Expanding Horizons. 2021. Singh B.D. Kalyani Publishers, Ludhiana.
- Biotechnology. 2005. Satyanarayana U. Books and Allied (P) Ltd., Kolkata.