YEAR – III	ENVIRONMENTAL MICROBIOLOGY	19EMB51A
SEMESTER - V	(For the students who are admitted in the year	HRS/WK - 4
ELECTIVE	2019 - 2020 and onwards)	CREDITS - 3

Objective: To make the students understand the role of microbes in ecology.

Course Outcomes:

Upon successful completion of the course, the student:

- **CO 1:** understands the different kind of microflora present in air and water environments
- **CO 2:** will be able to know the different process to treat the waste water and drinking water
- CO 3: knows about water pollution, and the process of composting and bioremediation
- **CO 4:** knows different kinds of microbes present in extreme environments
- **CO 5:** knows interactions among microorganisms and the study of non-cultivable microbes

SEMESTER: V			RSE C EMB5	-		COURSE TITLE: ENVIRONMENTAL MICROBIOLOGY			HOURS:	CREDITS:	
COURSE OUTCOMES	PRO	GRAM	IME O (PO)	UTCO	MES	PROGRAMME SPECIFIC OUTCOMES (PSO)			MEAN SCORE OF		
OUTCOMES	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	COs		
CO1	2	5	4	4	3	3	3	4		3.5	
CO2	2	4	4	4	4	3	4	3		3.5	
CO3	2	3	3	3	3	2	3	3	2	2.7	
CO4	3	5	4	4	4	3 5 4		4	4.0		
CO5	3	5	4	4	5	4 4 4			4	4.1	
	Mean Overall Score										

Result: The score of this course is 3.5 (High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

This Course is having **HIGH** association with Programme Outcomes and Programme Specific Outcomes.

Unit - 1 (12 Hrs)

Microbiology of air —Droplet, droplet nuclei, aerosols - air sanitation - airborne diseases—Microflora of water - lakes, ponds, rivers, ocean, estuary, ground water - Waterborne diseases - Eutrophication

Unit - 2 (12 Hrs)

Waste water treatment - primary, secondary (anaerobic and aerobic - trickling, activated sludge, oxidation pond) - Sludge digestion - Disposal - Drinking water treatment -

chlorination - Microbiological standards of water

Unit - 3 (12 Hrs

Water pollution – indicators of water pollution – BOD, COD; techniques for the study of water pollution; Composting; Bioremediation - types, importance, advantages and applications

Unit - 4 (12 Hrs)

Microorganisms in extreme environment - Applications of extremophiles; bioleaching; Microbial biofilm - Biochemistry of microbial biofilm, beneficial and harmful roles of biofilm.

Unit – 5 (12 Hrs)

Interaction among microbial populations (Neutralism, commensalisms, parasitism, antagonism); Microbial diversity - recent techniques to study non-cultivable microbes - Applications, advantages and limitations

Text Books

- Microbial Ecology Fundamental and Applications. 1998. Atlas and Bartha. Benjamin/ Curmmings Publishing Company, Inc., California
- Environmental Aspects of Microbiology. 1996. Joseph C. Daniel. Brightsun Publications, Chennai.

- Environmental Microbiology. 1992. Mitchell, R. John Wiley, New York.
- Environmental Microbiology. 1981. Grant W. D. and Long P.E. Blackie and Son Ltd., Glasgow
- Environmental Microbiology. 2016. Sharma, P.D. Rastogi Publications, Meerut, India.

YEAR – III	ALGAL TECHNOLOGY	19EMB51B
SEMESTER - V	(For the students who are admitted in the year	HRS/WK - 4
ELECTIVE	2019 - 2020 and onwards)	CREDITS - 3

Objective: To make the students understand the role of algae and their cultivation methods

Course Outcomes:

Upon successful completion of the course, the student:

CO 1: knows the importance of algae and their occurrence

CO 2: understands the technique of microalgae cultivation

CO 3: studies mass cultivation of macro algae and different applications of seaweeds

CO 4: appreciates the economic importance of algae

CO 5: becomes familiar with the emerging technologies in algal biotechnology

SEMESTER:		COU	RSE C	ODE:		COURSE TITLE:			HOURS:	CREDITS:	
V		19	EMB5	1B			ALGAL	ı	4	3	
						TEC	CHNOLO	OGY			
	PRO	GRAM	IME O	UTCO	MES	PR(PROGRAMME			MEAN SCORE OF	
COURSE			(PO)			S	PECIFI	C	(COs	
OUTCOMES						OUTCOMES (PSO)					
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3			
CO1	3	4	3	3	3	4	4	4	3	3.50	
CO2	4	3	3	2	3	4	4	4	3	3.37	
CO3	3	3	3	3	2	4	4	4	3	3.25	
CO4	3	3	3	2	2	4 4 4		3	3.12		
CO5	3 4 3 2 3					4	4	4	3	3.37	
	Mean Overall Score										

Result: The score of this course is 3.29 (High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

This Course is having **HIGH** association with Programme Outcomes and Programme Specific Outcomes.

Unit - 1 (12 Hrs)

Introduction to algal technology: Characteristics and classification of Algae - Chemical composition - protein, amino acids, lipids, waxes, glycerol, vitamins, pigments, chlorophyll, carotenoids and phycobiliproteins; Fresh water and marine algae — Macro and Micro algae — Occurrence — distribution.

Unit - 2 (12 Hrs)

Microalgae - biofertilizers – nitrogen fixing forms – free living and symbiotic nitrogen fixers – *Azolla* – Blue-green algal bio-fertilizer - Method of preparation and application, importance and selection of carrier materials - Characteristics, significance and uses of the following algae - *Dunaliella*, *Chlorella*, *Scenedesmus*, *Porphyridium*, *Gracilaria*, *Gelidium*, *Gelidiella*, *Laminaria*, *Porphyra*, and *Ulva*.

Unit – 3 (12 Hrs)

Macro algae - Mass cultivation, rope cultivation, Harvesting algae, Drying; Applications of seaweeds in biotechnology; liquid seaweed fertilizer; Algal immobilization and its applications.

Unit – 4 (12 Hrs)

Economic importance of algae - Algae as a source of food and feed; Algae as SCP - *Spirulina* - mass cultivation and its applications; Algae as a source of pigments and fine chemicals; other bioproducts from algae; Biofuel from algae - *Haematococcus* and *Botryococcus*.

Unit – 5 (12 Hrs)

Emerging Technologies in Algal Biotechnology - Laboratory cultivation of algae; Mass cultivation of algae; Culture media for algae; Methods of control of algae – Algicides - preparation and applications; Algal culture collection centers in India and abroad and their importance.

Text Book

• Algal cultural techniques. 2005 (1st Edition). Robert A. Anderson. Acdemic Press.

- Algae. 2011. Sharma, O.P. McGraw Hill Education (India) Private Limited.
- Algal biotechnology: Products and processes. 2016. Faizal, B. and Yusuf, C. Springer.
- Handbook of Microalgal culture: Biotechnology and applied phycology. 2004. Amos Richmond. Blackwell Publishing Ltd.
- Algae Energy. 2010. (1st Edition). Demirbas. Newness Publisher.
- Biotechnological Applications of Microalgae: Biodiesel and Value added products. 2013. (1st Edition). FaizulBux. 2013. CRC Press.

YEAR – III	DIODEMENIATION	19SMB51A
SEMESTER - V	BIOREMEDIATION (For the students who are admitted in the year	SELF STUDY COURSE
ELECTIVE	2019 - 2020 and onwards)	CREDITS – 2

Objective: To make the students aware of environmental pollutants and their biodegradation

Course Outcomes:

Upon successful completion of the course, the student:

CO 1: Understands Bioremediation and its types

CO 2: Lists the microbes involved in Bioremediation

CO 3: Knows the mechanisms of Bioremediation

CO 4: Understands the Bioremediation practices to treat soil and water pollution

CO 5: Is aware of the anaerobic treatments for different wastes

SEMESTER:		COU	RSE C	ODE:		COURSE TITLE:			HOURS:	CREDITS:
V		19	SMB5	1A		BIOR	EMEDIA	TION	-	2
COURSE OUTCOMES	COMES				PROGRAMME SPECIFIC OUTCOMES (PSO)			MEAN SCORE OF COs		
OUTCOMES	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3		
CO1	2	3	3	4	4	2	5	4	3	3.37
CO2	3	4	3	4	5	3	5	4	3	3.87
CO3	2	3	3	5	5	3	5	5	3	3.87
CO4	3	3	5	4	5	2	4	4	3.75	
CO5	2	3	4	3	4	2 4 4 3.25				3.25
	Mean Overall Score									

Result: The score of this course is 3.62 (High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

This Course is having **HIGH** association with Programme Outcomes and Programme Specific Outcomes.

Unit-1 (6 hrs)

Pollution - Types of pollution; Pollutants - Types of pollutants; Acid mine drainage; Bioaccumulation and biomagnifications; Bioremediation - definitions, different strategies, Types of bioremediation, advantages and limitations.

Unit - 2 (6 hrs)

Microbes for bioremediation – Bacteria and fungi; Role of plasmids in bioremediation; Gene manipulation in creation of new strains; Phytoremediation.

Unit - 3 (6 hrs)

Mechanism of bioremediation - Metabolic pathways for the degradation of xenobiotics; Bioprocess design — Optimization; Problems associated with biotreatment studies; Quantification of biodegradation.

Unit - 4 (6 hrs)

Bioremediation of soil and effluents; Bioreactors - Advantages and disadvantages; Biodegradation of oil spill in marine environment; Biosorption of heavy metals.

Unit- 5 (6 hrs)

Anoxic bioremediation; Fermentation; Anaerobic bioremediation of Hydrocarbons, Phenols, Chlorinatedphenolic compounds, Polycyclic Aromatic Hydrocarbon (PAH), Dyes and Radioactive wastes.

Text book:

• Microbial Bioremediation. 2011. P. Rajendran and P. Gunasekaran. MJP Publishers, Chennai, India.

- Bioremediation; Principles and Applications (Biotechnology Research). 2005. R.L. Crawford, D.L. Crawford. Cambridge University Press
- Microbial Biodegradation and Bioremediation. 2014. Surajith Das. Elsevier
- Advances in Biodegradation and Bioremediation of industrial wastes. 2015. Ram Chandra. CRC Press
- Bioremediation of Pollutants. 2020. V.C. Pandey and V. Singh. Elsevier.
- Biotechnology. 2020. U. Satyanarayana and U. Chakrapani. Books and Allied Ltd, Kolkata, India

YEAR – III
SEMESTER - V
ELECTIVE

ENTREPRENEURIAL MICROBIOLOGY

(For the students who are admitted in the year 2019 – 2020 and onwards)

19SMB51D
SELF STUDY
COURSE
CREDITS – 2

Objective: To motivate the students to exploit the microbial techniques and resources to emerge out as an entrepreneur.

Course Outcomes:

Upon successful completion of the course, the student:

CO 1: will understand the basic concepts of entrepreneurship in microbiology.

CO 2: will describe different microbial products and their production methods.

CO 3: will get knowledge about mushroom cultivation and its uses.

CO 4: will appreciate the microbial pigments and their uses.

CO 5: will have knowledge on biofertilizers and brewing.

SEMESTER: V			RSE C SMB5			COURSE TITLE: ENTREPRENEURIAL MICROBIOLOGY			HOURS:	CREDITS:
COURSE	PROGRAMME OUTCOMES (PO)					:	OGRAM SPECIFIC COMES	C		CORE OF
OUTCOMES	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3		
CO1	2	5	4	4	3	3	3	3	,	3.3
CO2	2	3	3	4	3	3	3	3		3.0
CO3	2	4	4	4	3	3	3	3		3.2
CO4	3	4	3	3	3	3	3	3		3.1
CO5	3	4	4	5	4	3	3	4	,	3.7
Mean Overall Score										3.2

Result: The score of this course is 3.2 (High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

This Course is having **HIGH** association with Programme Outcomes and Programme Specific Outcomes.

Unit - 1 (6 hrs)

Introduction: Entrepreneur development – activity – Institutions involved – Government contributions to entrepreneurs – risk assessment– Qualities of an Entrepreneur – Factors influencing Entrepreneurship.

Unit - 2 (6 hrs)
Microbial products: Microbial cells as fermentation products- Baker's yeast, food and feed

yeasts, Bacterial insecticides, Legume inoculants, Algae; Enzymes as fermentation products-Bacterial and Fungal Amylases, Proteolytic Enzymes, Pectinases, Invertases and other enzymes.

Unit - 3 (6 hrs)

Mushroom cultivation: Mushroom cultivation – edible and poisonous mushrooms – cultivation of *Agaricus campestris*, *Agaricusbisporus*, and *Volvariellavolvaciae*, Preparation of compost, filling tray beds, spawning, maintaining optimal temperature, casing, watering, harvesting, storage. Mushroom recipes (Western and Indian recipes, pickles, jams etc.)

Unit - 4 (6 hrs

Microbial pigments: Prodigiosin – violacein and deoxyviolacein – fungal Monascin – bacterial and algal carotenoids – astaxanthin – occurrence, isolation, chemical and biological properties – Catalysis – its applications and importance.

Unit - 5 (6 hrs)

Biofertilizers and Brewing: Biofertilizers - Historical background, Chemical fertilizers versus biofertilizers, organic farming. *Rhizobium* sp, *Azospirillum*sp, *Azotobacter* sp, as Biofertilizers. Brewing - media components, preparation of medium, microorganisms involved, maturation, carbonation, packaging, keeping quality, contamination, by-products.

Text books:

- Entrepreneurship: A south Asian Perspective. 2012 (1st Edition). Kuratko and Roa, Cengage Learning.
- Experiments in Microbiology, plant pathology Tissue culture and mushroom production technology. 2017 (6th Edition) K.R Aneja. New Age International Publication.

- Food microbiology. 2013 (5th Edition). William C. Frazier and Dennis C. Westhoff.
- Pigment Microbiology. 1992. Margalith P.Z. Chapman and Hall.
- Industrial Microbiology. 1986 (1st Edition) L.E. Casida. New Age Publication.

YEAR – III
SEMESTER - VI
CORE - 13

SOIL AND AGRICULTURAL MICROBIOLOGY

MICROBIOLOGY
(For the students who are admitted in the year 2019 - 2020 and onwards)

HRS/WK - 5

CREDITS - 4

19MB613

Objective: To make the students understand the importance of microbes in soil fertility and plant diseases.

Course Outcomes:

Upon successful completion of the course, the student:

- **CO 1:** Understands different soil microflora and their roles in improving soil fertility
- **CO 2:** Knows the plant-microbe interactions and their outcomes
- CO 3: Studies different cyclical movement nutrients and different kinds of biofertilizers and biopesticides
- **CO 4:** Understands different plant diseases due to bacterial and fungal phytopathogens
- CO 5: Studies different plant diseases due to viruses and nematodes

SEMESTER: VI	COURSE CODE: 19MB613					COURSE TITLE: SOIL AND AGRICULTURAL MICROBIOLOGY		HOURS:	CREDITS:	
COURSE OUTCOMES	PROGRAMME OUTCOMES (PO) PO1 PO2 PO3 PO4 PO5			PROGRAMME SPECIFIC OUTCOMES (PSO) PSO1 PSO2 PSO3				SCORE OF COs		
CO1	2	5	4	4	3	3	3	4		3.5
CO2	2	4	4	4	4	3	3	4		4.3
CO3	2	3	3	4	3	2	3	3	2.8	
CO4	3	5	4	4	4	3	5	4	4.0	
CO5	3	3	3	5	5	4	4	4		3.8
	Mean Overall Score									3.6

Result: The score of this course is 3.6 (High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

This Course is having **HIGH** association with Programme Outcomes and Programme Specific Outcomes.

Unit - 1 (15 Hrs)

Soil – physical and chemical properties; soil microorganisms - bacteria, algae, fungi, actinomycetes, protozoans, nematodes and viruses – Influence of soil and environmental factors on soil microflora - Role of microbes in soil fertility - Winogradsky column.

Unit - 2 (15 Hrs)

Microbial interactions with plants - Mycorrhizae, Rhizosphere, Phyllosphere, Spermosphere-Plant growth promoting bacteria — Mechanisms of plant growth promotion - Organic matter decomposition - humus formation - Biodegradation of pesticides in the soil

Unit - 3 (15 Hrs)

Biogeochemical cycles - carbon, phosphorus, sulphur, Iron and nitrogen cycles; Nitrogen fixation – symbiotic and free living; Biofertilizers - Types (bacterial and algal), Examples and advantages; Biopesticides - types (bacterial, fungal and viral), Examples and advantages; Mass multiplication of microbial Bioinoculants

Unit - 4 (15 Hrs)

Plant pathogenic microorganisms - Disease symptoms, mode of entry, control measures - Diseases caused by bacteria – bacterial Wilt of potato- Citrus canker, leaf blight of paddy as examples - Diseases caused by fungi - False smut of paddy, Leaf smut of rice, wheat rust, Red rot of sugarcane and Tikka disease of groundnut as examples

Unit - 5 (15 Hrs)

Diseases caused by viruses - Tungrovirus, Virus diseases of papaya and sugarcane - Bunchy disease of banana - Leaf curl of tomato as example - Diseases caused by *Mycoplasma* - Little leaf of brinjal as example - Diseases due to Phytoplasma - Sugarcane grassy shoot disease as example - Diseases due to nematodes - Root knot of vegetables as example - Seed borne diseases.

Text Books

- Diseases of crop plants in India. 1999 (4th Edition). G. Rangaswami, A. Mahadevan. Prentice Hall of India Private Ltd., New Delhi.
- Agricultural Microbiology. 1998 (2nd Edition). G. Rangaswami, D. J Bagyaraj. Prentice -Hallof India Private Ltd., New Delhi, India

- Microbiology Fundamentals and Applications. 1998. Atlas and Bartha. Benjamin/Cummings Publishing Company, Inc., California.
- Introduction to Soil Microbiology. Alexander. M. 1961. John Wiley Sons, Inc. New York &. London.
- Fundamental Agricultural Microbiology. 2017. Aneja, K.R. International private limited, Chennai, India
- Fundamental of Plant Pathology. 2013. Ravichandra, N.G. PHI publishers, New Delhi, India
- A Textbook of Plant Pathology. 2020. Sambamurty, A.V.V.S. Dreamtech Press, New Delhi, India

YEAR – III
SEMESTER - VI
CORE - 16

BIOTECHNOLOGY

(For the students who are admitted in the year 2019 - 2020 and onwards)

19MB616
HRS/WK - 5
CREDITS - 4

Objective: To make the students understand the basic principles and techniques involved in gene technology

Course Outcomes:

Upon successful completion of the course, the student:

CO1: Understands the basics of recombinant DNA technology and cloning vectors.

CO2: Gains knowledge about the DNA and its amplification.

CO3: Acquires knowledge about enzymes and biofuels.

CO4: Understands the usage of plants and exploitation of them through genetic modification

CO5: Understands the usage of animals and exploitation of them through genetic modification, patenting and intellectual property rights.

SEMESTER:	COURSE CODE:					COU	RSE TI	TLE:	HOURS:	CREDITS:	
VI	19MB616					BIOTI	ECHNO	LOGY	5	4	
	PROGRAMME OUTCOMES					PROGRAMME					
COURSE	(PO)					SPECIFIC			MEAN SCORE OF		
OUTCOMES						OUTCOMES (PSO)			COs		
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3			
CO1	3	4	4	4	3.5	3	3.5	4	3	.62	
CO2	3	4	4	4	4	3	4	3.5	3	.68	
CO3	4	3	3.5	3	3	4	3.5	3	3	.37	
CO4	3.5	4	4	4	4	3	4	4	3	.81	
CO5	3	4	4	4	4	4	4	4	3	.87	
	Mean Overall Score									.67	

Result: The score of this course is 3.67 (High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

This Course is having **HIGH** association with Programme Outcomes and Programme Specific Outcomes.

Unit - 1 (15 Hrs)

Definition and history – Recombinant DNA technology – Restriction endonucleases- Cloning vectors – pBR322, Cosmids - M13 phage vector and its applications – DNA ligation.

Unit - 2 (15 Hrs)

Chemical synthesis of DNA - DNA sequencing – Hybridisation techniques - Southern and Northern blotting techniques – Colony hybridization - PCR – Genomic library.

Unit - 3 (15 Hrs)

Enzyme technology – Enzyme immobilisation, products, Applications - Biofuel –Hydrogen gas as fuel from Microorganisms – Biodiesel.

Unit - 4 (15 Hrs)

Genetic engineering of plants – Electroporation – Gene gun – Particle bombardment- Ti plasmid vectors – Cauliflower mosaic virus as cloning vector - Applications- Transgenic plants – Insect resistant, Virus resistant plants, genetically modified foods.

Unit - 5 (15 Hrs)

Transgenic animals –Retroviral vector method , DNA microinjection method –Applications of r DNA technology – Recombinant produts –insulin, tPA, Interferons – Gene therapy – Patents – IPR.

Text Books

- Elements of Biotechnology. 1996. Gupta, P.K. Rastogi and Company, Meerut.
- Basic Biotechnology. 2001 (2nd edition). Ratledge C. and B. Kristiansen. Cambridge University press, United Kingdom.

- Principles of Gene Manipulation. 1994 (5th Edition).Old, R.W. and S.B.Primrose. Blackwell Science, Oxford.
- Molecular Biotechnology Principles and Applications of Recombinant DNA technology. 2010 (4th Edition). Glick, B. R., Pasternack J.J. and Patten C.L.ASM Press.
- Genetics- A Molecular Approach. 2004. Brown, T.A. Chapman Hall, London.
- Biotechnology Expanding Horizons. 2021. Singh, B.D. Kalyani Publishers, Ludhiana.

CEMECTED VOLU	III B.Sc. Microbiology
SEMESTER - V & VI	SEMESTER - V & VI

CORE PRACTICAL - 3

(For the students who are admitted in the year 2019 – 2020 and onwards)

19MBP603 HRS/WK - 3 CREDITS - 3

LIST OF EXPERIMENTS

- 1. Open plate method
- 2. Enumeration of bacteria from water sample
- 3. Coliform count in water (MPN Technique)
- 4. Presence/Absence test for coliforms in water
- 5. Microscopic Examination of curd
- 6. Isolation of Lactobacillus and Staphylococcus from curd
- 7. Microscopic examination of fungi by Lactophenol cotton blue method -Mucor and Rhizopus
- 8. Microscopic examination of microorganisms in spoiled food
- 9. Isolation of bacteria from spoiled food
- 10. Detection of bacteria in milk by SPC
- 11. Methylene blue reduction test
- 12. Phosphatase test for Milk
- 13. Turbidity test for sterilized Milk
- 14. Cross section of root nodule

LIST OF SPOTTERS

- 1. Butter
- 2. Cheese
- 3. Canned food
- 4. Spoiled vegetable
- 5. Spoiled bread
- 6. Rhizopus Lactophenol cotton blue mount
- 7. Mucor- Lactophenol cotton blue mount
- 8. BOD bottle
- 9. Membrane filter
- 10. Trickling filter
- 11. Lactophenol cotton blue stain
- 12. Methylene blue for MBRT
- 13. Yeast
- 14. Bread
- 15. Vinegar
- 16. Mushroom
- 17. E colion EMB agar
- 18, Lactose fermenting colonies on Mac Conkey agar
- 19. YEMA medium
- 20. Root nodule
- 21. Cross section of root nodule

- 22. MPN Preliminary test Lauryl tryptose broth with durhams tube 23. MPN Confirmed test Brilliant green lactose bile broth with durhams tube
- 24. Curd
- 25. Milk
- 26. Milk sample with Methylene blue in screw cap tube
- 27. Teasing needle
- 28. Lactobacillus on Oxgall Agar
- 29. Staph. aureus on Baird parker agar

III B.Sc. ZOOLOGY	BIOFERTILIZER TECHNOLOGY	20EZ513A
SEMESTER - V	For the students admitted from the year	HRS/WK - 4
ELECTIVE	2018-19 onwards	CREDIT - 2

Objective: To enable the students learn the importance of biofertilzers and their production

- To enlighten the students with the knowledge of microbial inoculants
- To highlight the role of microorganisms in soil fertility and plant growth promotion
- To understand the process of isolation, production, formulation, method of application and quality control of bio-fertilizers

Course Outcomes:

Upon successful completion of the course, the student:

CO 1: will be able to appreciate the role of soil microorganisms

CO 2: will be able to describe various nitrogen fixing organisms

CO 3: will be able to explain different nutrient solubilizing bacteria

CO 4: will be able to gain knowledge on production of biofertilizers

CO 5: will be able to elaborate on the formulation of biofertilizers

SEMESTER:	COURSE CODE:					TITLE OF THE		HOURS:	CREDITS:	
\mathbf{V}	20EZ513A						PAPER:		4	2
						BIOFERTILIZER				
					TECHNOLOGY					
	PRO	GRAM	IME O	UTCC	MES	PR(OGRAM	ME	MEAN S	CORE OF
COURSE	(PO)				SPECIFIC		COs			
OUTCOMES					OUTCOMES (PSO)					
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3		
CO1	3	2	5	5	4	4	4	5	4	4.0
CO2	2	2	5	5	3	3	5	5		3.7
CO3	2	2	4	5	4	3	5	5		3.7
CO4	4	2	4	4	4	3	4	4	,	3.6
CO5	4	2	4	4	4	3	5	5		3.8
Mean Overall Score										3.7

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

This Course is having **HIGH** association with Programme Outcomes and Programme Specific Outcomes.

Unit – 1 (12 Hrs)

SOIL MICROORGANISMS AND PLANTS: Important groups of soil microorganisms - Bacteria, Fungi, Algae, Protozoa, and Viruses - Microbial interactions in soil- positive and

negative interactions - Rhizosphere - Phyllosphere - Spermosphere - R:S ratio; Biofertilizers - definition, types, importance of biofertilizers in agriculture; Plant Growth Promoting Rhizobacteria (PGPR) and their products - Cytokinin, Gibberellic acid, IAA, HCN and Siderophore.

Unit – 2 (12 Hrs)

NITROGEN FIXERS: Biological nitrogen fixation (BNF) - mechanism of BNF - Symbiotic nitrogen fixation - legume symbiosis- Rhizobium- characters and classification, nodulation- Free living nitrogen fixation - BGA, Azolla, Azospirillum, Azotobacter, Glucanoacetobacter and Frankia.

Unit – 3 (12 Hrs)

NUTRIENT SOLUBILIZERS AND MOBILIZERS: Solubilization of insoluble P, K, Zn and Si; Important solubilizing bacteria and fungi - Mycorrhizal bioinoculants - classification - Ectomycorrhizae - Endomycorhizae - VAM- Taxonomy of mycorrhizae - role of mycorrhizae.

Unit – 4 (12 Hrs)

PRODUCTION TECHNOLOGY: Isolation and mass multiplication of Nitrogen fixers (*Rhizobium*), P, K, Zn and Si solubilizing organisms (*Pseudomonas*), BGA, *Azollae* and Mycorrhizae - Carrier materials – selection, sterilization and preparation of carrier materials – fermenters.

Unit – 5 (12 Hrs)

FORMULATION OF BIOFERTILIZERS: Carrier based, gel based and liquid based biofertilizers - Quality control of different formulations - Problems and constraints in production- Methods of application and recommendations

Text Books

- Soil Microbiology.199 (4th Edition). Subba Rao N.S. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, India
- Agricultural Microbiology. 2002(2nd Edition).Bagyaraj D.J. and G. Rangasamy. Prentice Hall, New Delhi, India

- Microbes as Bio-fertilizers and their production Technology. 2015. Borkar S.G. Wood Head Publishers, New Delhi.
- Biofertilizers: Commercial production Technology and quality control. 2017. Hyma P. Random publishers, New Delhi
- Biofertilizer Manual. 2006. FNCA (Forum for Nuclear Cooperation in Asia) Biofertilizer Project Group. Published by Japan Atomic Industrial Forum.