

E-mail : josecol27998@gmail.com Website: www.sjctnc.edu.in

1.1.2: The programmes offered by the institution focus on employability / entrepreneurship / skill development and their course syllabi are adequately revised to incorporate contemporary requirements

M.Sc. PHYSICS

I M.Sc.(PH)		PPH11A
SEMESTER - I	CLASSICAL MECHANICS	HRS/WK-5
CORE – I		CREDIT-4

To understand the various formulations in Classical Physics, dynamics of Rigid body and other relativistic mechanical concept of physics

COURSE OUTCOMES (CO):

CO1:Acquire knowledge of Lagrangian formulations
CO2:Understand the concepts Central Force Motion And Small Oscillations
CO3:Understand the concept of Hamiltonian Formulations
CO4:Study the dynamics of rigid bodies
CO5:Understand the concepts of relativistic mechanics

Relationship Matrix Course Outcomes, Programme Outcomes and Programme Specific Outcomes

SEMESTER	CO	URSE	E COD	E:PPI	H11A	C	OURS	E TITL	E: CLA	SSICA	L	Hours: Credit
- I									5 :4			
Course	Prog	ramn	1e Ou	tcome	es Pos	Prog	ramme	e Specif	ic Out	comes l	PSOs	Mean Score
Outcomes	DO1	DOA	DO1	DO4	DO5	DCO1	DCOA	of CO's				
COs	POI	PO2	P03	PO4	PO5	P501	P502	P503	P504	P505	PSO6	
CO1	3.5	2.5	4.1	3.5	3.5	2.5	3	3.5	4.2	3.2	3.2	3.33
CO2	3.6	3.2	3.6	3	3.5	2.8	4.1	3.6	3.7	2.3	3.5	3.35
CO3	3.5	4.3	3.5	2.8	3	3.6	3.5	3.5	3.7	4.2	3.3	3.53
CO4	3.2	3.6	3	4	3	3.5	3.4	2.8	3.4	3.5	3.6	3.36
CO5	4	3.5	3.5	3.2	3.6	2.5	3.5	3.2	4	3.2	3.5	3.42
	•	•	•	Me	ean Ov	erall Sc	ore					3.40

Result: The Score for this course is 3.40 (High)

Association	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Interval	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Rating	Very Poor	Poor	Moderate	High	Very High

This course is having **High association** with Programme Outcome and Programme Specific Outcome.

Principles and Lagrangian Formulation : Mechanics of a particle and system of particles – **Conservation laws**- Co-ordinate systems -Constraints - Generalized co-ordinates-Degrees of freedom -Principle of virtual work– D'Alembert's principle -Lagrangian equation of motion fromD'Alembert's principle - Hamilton's principle - Lagrangian equation of motion from Hamilton's principle –Symmetry properties of Space and Time and Conservation laws.

UNIT - II (15 Hours) Central Force Motion and Small Oscillations: Reduction of two body problem into one body problem-Central Force and Motion in a Plane –Inverse Square Law of Force- Kepler's Law of Planetary Motion-Deduction of Keplers First Law – RungeLenz vector – Rutherford Scattering cross section- Centre of Mass and Laboratory frames of references - Theory of small oscillations – frequencies of free vibration and normal - coordinates – Linear Di & Tri atomic molecules (HCl, NO₂) – a spring pendulum – double pendulum.

UNIT - III

Hamiltonian Formulations: Hamilton's canonical equation – proof of principle of least action – general equations of canonical transformations -Cyclic Co-ordinates- Hamilton - Jacobi differential equation – Legrange's brackets and Poisson's brackets – Action angle variables – the Kepler problem in action angle variable.

UNIT - IV

Rigid Body Dynamics: Angular momentum – rotational kinetic energy and moment inertia of a rigid body – Euler's angle – moments and products of inertia – Eulers' equation – Motion of a symmetrical top under the action of gravity.

UNIT - V

Relativistic Mechanics: Principle of Relativity-Relativistic Kinetic Energy-Lorentz transformations – Lorentz transformations in real four dimensional spaces – covariant four dimensional formulations – force and energy equations in relativistic mechanics – Lagrangian and Hamiltonian formulation of relativistic mechanics.

TEXT BOOKS:

- 1. Rana.N.C&Joag, P.S, Classical Mechanics, Tata McGraw Hill Education. 2015
- 2. Herbert Goldstein, Classical Mechanics, Narosa Publications.2001
- 3. David Morin, Introduction to Classical Mechanics, 2008

REFERENCE BOOKS:

- 1. C.R.Mondal, Classical Mechanics, PHI Learning Private Limited.2008
- 2. R. Douglas Gregory, Classical Mechanics, Cambridge University Press.2006
- 3. Gupta Kumar Sharma, Classical Mechanics.2010

(15 Hours)

(15 Hours)

(15 Hours)

I M.Sc. (PH)		PPH12A
SEMESTER - I	MATHEMATICAL PHYSICS I	HRS/WK-5
CORE – II		CREDIT-4

To develop the ability to solve Linear and Non-linear differential Mathematical problems.

COURSE OUTCOMES (CO):

CO1: Give the basic knowledge of vector spaces
CO2:Study the complex variables
CO3:Understand the Fourier Series And Laplace Transforms
CO4:Under various differential equations
CO5: Understand the concepts of special functions

Relationship Matrix Course Outcomes, Programme Outcomes and Programme Specific Outcomes

SEMESTER				CODE	:	COU	J RSE T	TTLE:N	MATHE SICS I	EMATI	CAL	Hours:	Credit:
- I			PPH12	2A					5	4			
Course												Mean Score	
Outcomes	Prog	grami	ne Ot	itcom	es	Progr	amme	Specifi	ic Outc	SOs	of CO'	S	
COs	POs												
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6		
CO1	3.5	2	4.1	3.4	3.5	2.5	3	3.4	4	3.2	3.2	3.	25
CO2	3.4	3	3.6	3	3.5	2.8	4	3.6	3.7	2.1	3.5	3.	29
CO3	3.5	4	3.5	2.8	3	3	3.5	3.5	3.4	4	3.3	3.	40
CO4	3.4	3.6	3	4.2	3.7	3.5	3.4	2.8	3.4	3.7	3.6	3.	48
CO5	4.3	3.6	3.5	3.2	3.6	2.8	3.5	3.2	4.2	3.5	3.7	3.	55
				Me	ean Ove	erall Sc	ore					3.	39

Result: The Score for this course is 3.39 (High)

Association	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Interval	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Rating	Very Poor	Poor	Moderate	High	Very High

This course is having **High association** with Programme Outcome and Programme Specific Outcome.

Linear Algebra: Physical examples of Vectors and Matrices - Linear equations - Linear combinations – linear dependence and independence - Vector spaces: real and complex - subspace, basis, dimension - Linear transformations - Inner product, norm, Orthogonality, - Cauchy-Schwarz inequality - Orthonormal basis - Gram-Schmidt orthogonalization–solution of linear equations by determinants (Cramer's rule)-Transformation of vectors and matrices - Similarity of linear transformations- Diagonalization of a matrix - completeness.

UNIT - II

Complex Variables: Complex variable theory - Single and multivalued functions - The Cauchy-Riemann differential equations - Cauchy's integral theorem and integral formula - Residue and Cauchy's residue theorem - Lioville's theorem – Applications of the evaluation of definite integrals.

UNIT - III

Fourier series: Fourier series — Dirichlet conditions – Even function and odd function-Halfwave expansions – arbitrary period—Parseval'stheorem- Application of Fourier series in Harmonic Analysis

$\mathbf{UNIT} - \mathbf{IV}$

Integral transforms: Fourier integral transforms - Fourier Sine and Cosine transformation -Laplace transform –change of scale property- first and second (Heaviside's) shifting theorems - Inverse Laplace transforms –some important formulae- First and second shifting property-Laplace transformation for solving differential equations of a function.

UNIT - V

Differential Equations: Linear ordinary differential equations of first order and second order – Degree of ordinary differential equations – Linear differential equation - General solution and particular solution – Method of solution – Higher order differential equation – Homogeneous linear differential equation – Linear differential equation of second order. **TEXT BOOKS:**

- 1. H.k.dass, Dr Rama Verma, Mathematical Physics.2016
- 2. Sathyaprakash. R, Mathematical Physics.2014
- 3. P K Chattopadhyay Mathematical Physics, 2013.
- 4. Spiegel, Fourier Laplace Transforms, Schaum's Outline Series.2014

REFERENCE BOOKS:

- 1. Kreyszig E, Advanced Engineering Mathematics.2011
- 2. Howard Anton, Elementary Linear Algebra, John Wiley Sons2000
- 3. Engineering Mathematics-series, Dr. M. K. Venkataraman- The National publishing company-Madras.1992

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

I M.Sc. (PH)		PPH13A
SEMESTER - I	ELECTROMAGNETIC THEORY	HRS/WK-5
CORE – III		CREDIT-4

To understand the concepts of Relativistic electromagnetic.

COURSE OUTCOMES (CO):

CO1: Study electromagnetic waves

CO2: Understand the concepts of reflection and transmission of EM waves

CO3: Acquire knowledge of wave guides and waves

CO4: Study about antenna and wave propagation

CO5: Understand the concepts relativistic electrodynamics

Relationship Matrix Course Outcomes, Programme Outcomes and Programme Specific Outcomes

SEMESTER		COU	RSE C	ODE	:		С	OURS	E TITL	Е:		Hours:	Credit:
-I		P	PH13	A		EI	LECTR	5	4				
Course	Prog	ramm	e Out	tcome	\$S	Prog	ramme	PSOs					
Outcomes	POs											Mean	Score
COs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	of C	CO's
CO1	3.1 3.8 4.2 3.5 3.5					2.8	3.5	3.3	4.2	3	3.5	3.4	49
CO2	3.8	3.2	3.6	3	3.5	3.6	4.3	3.5	3.5	2.6	3.7	3.4	48
CO3	3.5	4.2	3.2	2.5	3	3.7	3.2	3.5	3.5	3	3.4	3.	33
CO4	3	3.8	3	3.7	3	4	3	2.9	3.5	3.2	3.5	3.	32
CO5	4.1	2.5	3.5	3	3.5	2.2	3.5	3.2	3	3.1	2.5	3	.1
				Mea	an Ov	erall Sc	ore					3.1	34

Result: The Score for this course is 3.34(High)

Association	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Interval	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Rating	Very Poor	Poor	Moderate	High	Very High

This course is having **High association** with Programme Outcome and Programme Specific Outcome.

Electrostatics: Laplace and Poisson equations - Boundary value problems - boundary conditions and uniqueness theorem - Laplace equation in three dimensions- Solution in Cartesian and spherical polar coordinates – Examples of solutions for boundary value problems - Polarization and displacement vectors - Dielectric sphere in a uniform field – Molecular polarisability and electrical susceptibility –Langevin Theory of Polar molecules - Electrostatic energy in the presence of dielectric – Multipole expansion.

UNIT - II

Magnetostatics: Biot-Savart Law - Ampere's circuital law - Magnetic vector potential and magnetic field of a localised current distribution - Magnetic moment, force and torque on a current distribution in an external field - Magnetostatic energy - Magnetic induction and magnetic field in macroscopic media - Uniformly magnetized sphere.

UNIT - III

Maxwell Equations: Faraday's laws of Induction - Maxwell's displacement current Maxwell's equations – free space and linear isotropic media - Vector and scalar potentials -

Gauge invariance - Wave equation and plane wave solution- Coulomb and Lorentz gauges -Energy and momentum of the field - Poynting's theorem - Lorentz force - Conservation laws for a system of charges and electromagnetic fields.

UNIT - IV

Electromagnetic Waves: Plane waves in non-conducting media - Linear and circular polarization, reflection and refraction at a plane interface- Fresnel's law, interference, coherence and diffraction - Waves in a conducting medium - Propagation of waves in a rectangular wave guide - Inhomogeneous wave equation and retarded potentials - Radiation from a moving charges - Oscillating electric dipole.

UNIT-V

Relativistic Electrodynamics: Four vector-Lorentz transformation of space and time in four vector form. - Transformation of electromagnetic potentials - Maxwell's equation in covariant tensor form

TEXT BOOKS:

- 1. David. I. Griffiths, Introduction to electrodynamics, Prentice Hall of India2012
- 2. Sadiku, Elements of Electromagnetics 2014
- 3. SatyaPrakash, Electromagnetic Theory & Electrodynamics, ArihantPublishers, 2012.

REFERENCE BOOKS:

1. Sengupta P, Classical Electrodynamics, New Age International publishers.2015

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

- 2. Andrew Zangwill, Modern Electrodynamics.2013
- 3. AnupamGarg, Classical Electromagnetism in a Nutshell. 2012

To understand the fabrication and applications of IC and other electronic and microwave devices.

COURSE OUTCOMES (CO):

CO1: Acquire knowledge of PN junction diode and special diodes

CO2: Understand the concepts of various semiconductor transistors & devices

CO3: Study microwave devices

CO4: Understand the concepts Op-amps and its applications

CO5: Apply the knowledge of Oscilloscope and other measuring instruments

Relationship Matrix Course Outcomes, Programme Outcomes and Programme Specific Outcomes

SEMESTER		COU	RSE C	ODE:			С	OURSE	E TITLI	E:		Hours:	Credits
–I		18	EPPH	[14			ELEC		5	: 3			
							A	PPLIC	ATION	S			
Course	Prog	ramm	e Out	come	s POs	Prog	gramme	e Specif	fic Out	comes I	PSOs	Mean	Score
Outcomes													CO's
COs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6		
CO1	3	3.8	4	3.5	3	2.6	3.4	3	4	3	3.2	3.	31
CO2	3.5	3	3.2	3	3	3.6	4	3.4	3	2.6	3.5	3.	25
CO3	3.7	4.1	3.2	2.6	3.2	3.2	3	3.5	3.8	3.5	3.3	3.	37
CO4	3.4	3.8	3	4.3	3.4	4	3.5	2.8	3.5	3	3.8	3	.5
CO5	4.2	3.5	3.5	3.2	3.6	2.7	2.7 3.8 3 4 3.7 3.5				3.5	3.	51
				Mea	an Ove	erall Sc	ore					3.	39

Result: The Score for this course is 3.39 (High)

Association	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Interval	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Rating	Very Poo	r Poor	Moderate	High	Very High
I M.Sc.	(PH)	еі естра	ONIC DEVICES	18E	CPPH14
SEMEST	FER - I		JUCATIONS	HR	S/WK-5
ELECTI	VE – IA	ærrl		CR	EDIT-3

This course is having **High association** with Programme Outcome and Programme Specific Outcome.

(15 Hours)

(15 Hours)

(15 Hours)

UNIT - I

Fabrication of IC and Logic Families: Fabrication of IC - Monolithic integrated circuit fabrication - IC pressure transducers -Monolithic RMS - Voltage measuring device - Monolithic voltage regulators - Integrated circuit multipliers - Integrated circuit logic - Schottky TTL - ECL - I2L - P and N-MOS Logic - CMOS Logic - Tristate logic circuits – PLA, PLC and PLD.

UNIT - II

Opto Electronic Devices: Light sources and Displays - Light emitting diodes - Surface emitting LED - Edge Emitting LED -Seven segment display - LDR - Diode lasers - Photo detectors - Basic parameters - Photodiodes - p-i-n Photo diode - Solar cells - Photo transistors - IR and UV detectors.

UNIT - III

Negative Conductance Microwave Devices: Transit time devices: IMPATT diode – QWITT diode – TRAPATT diode - Gunn diode - The transferred electron mechanism – Formation and drift of space charge domains - modes of operation in resonance circuit - Fabrication and applications.

UNIT - IV

Oscilloscope and Other Measuring Instruments: Introduction - Cathode Ray Tube - Theory and Construction - Cathode Ray Oscilloscope Operation - Voltage Sweep Operation - Synchronization and Triggering - Multitrace Operation - Measurement Using Calibrated CRO Scales - Special CRO Features - Signal Generators.

UNIT - V

Communication Electronics: Local Loop, PSTN, ISDN, digital exchanges, satellite communication and VSAT, Wireless communication technologies: spread spectrum techniques, OFDM, Cellular phones, 3G wireless, IP telephony, Bluetooth, IrDA, CDMA.

TEXT BOOKS:

- 1. Liano S.L., Microwave Devices and Circuits, Prentice Hall of India.1990
- 2. J. Millman, 1979, Digital and Analog Circuits and Systems, McGraw-Hill, London.
- 3. Electronic Communication systems Roy Blaks, Thomson Delmar 2002.

REFERENCE BOOKS:

1. Gutpa Y.C., Microwave Electronics, John Wiley. 1999

(15 Hours)

- 2. P. Bhattacharya, 2002, Semiconductor Optoelectronic Devices, 2nd Edition, Prentice-Hall of India, New Delhi.
- 3. Modern Electronic Communications Gray M. Miller Jeffrey Beasley, PHI, 2003.
- 4. Electronic Communication Carlson Published 2002 McGraw-Hill.

COURSE OUTCOMES (CO):

CO1: Understand the basic principles of laser action

CO2: Learn the characteristics of laser

CO3: Provide solutions to various problems related to laser systems

CO4: Apply the laser spectroscopic techniques in various applications

CO5: Study the features and parameters of quantum laser

Relationship Matrix Course Outcomes, Programme Outcomes and Programme Specific Outcomes

SEMESTER- I		COUI 18	RSE C EPPH				C L	Hours: 5	Credit: 3				
	Prog	ramm	e Out	come	s POs	Prog	ramme	e Specif	ic Out	comes I	PSOs	М	C
Outcomes Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6		Score CO's
CO1	3 3 3 3 2				3	3	3	3	3	3	2.9	909	
CO2	3	3	3	3	3	3	3	3	3	4	3	3.0)90
CO3	3	4	3	3	2	4	3	3	4	3	3	3.1	181
CO4	4	3	3	3	3	3	4	4	3	3	3	3.2	272
CO5	4	4	4	3	2	3 3 4 3 4 3					3	3.3	363
	•	•		Mea	an Ove	erall Sco	ore				•	3.1	.63

Result: The Score for this course is 3.16 (High)

Association	1-20%	21-40%	6 41-60%	61-80	%	81-100%	
Scale	1	1 2 3		4		5	
Interval	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4	.0	4.1-5.0	
Rating	Very Po	or Poor	Moderate	Hig	1	Very High	
I M.Sc.	(PH)	·			1	8EPPH15	
SEMEST	ER - I	LA	SER PHYSICS		H	IRS/WK-5	
ELECTIV	$\mathbf{E} - \mathbf{IB}$				(CREDIT-3	

OBJECTIVES:

To understand the basic principles, features, parameters and characteristics of Laser.

This course is having **High association** with Programme Outcome and Programme Specific Outcome.

Principles of Laser Action: Einstein's theory - Interaction of radiation with matter - Theory of some simple processes.

UNIT - II

Laser Characteristics: Gaussian beam and its properties - Stable two Minor optical resonators, Longitudinal and Transverse Modes of Laser cavity- Mode selection-gain in a Regenerative Laser cavity-Threshold for 3 and 4 level laser systems- Mode locking pulse shortening-Pico second &femto second operation- Spectral narrowing and stabilization.

UNIT - III

Laser Systems:Laser systems involving low density gain media- Nitrogen Laser, Carbondioxide Laser and Excimer Laser. Laser systems involving high density gain media-Ruby Laser, Nd-YAG laser, Semiconductor laser, Diode Pumped solid state laser, Dye laser, High power semiconductor diode laser systems.

UNIT - IV

Laser Spectroscopic Techniques and Other Applications: Laser fluorescence and Raman scattering and their use in Pollution studies, Nonlinear interaction of light with matter, laser induced multi photon processes and their applications, Ultra high resolution spectroscopy with laser and its applications, Propagation of light in a medium with variable refractive index, optical Fibers. Light wave communication - Qualitative treatment of medical and engineering applications of Lasers.

UNIT - V

Quantum Treatment: Einstein coefficients-Momentum transfer- life time- Possibility of amplification. Quantization of the field- Zero point energy, Coherence and monochromaticity, Kinetics of Optical absorption- Quantum mechanical treatment of line broadening mechanism-Doppler broadening.

TEXT BOOKS:

- 1. OrazioSvelto, Principles of Lasers1991
- 2. William t. Silfvast, Laser Fundamentals 2004
- 3. B.B. Laud, Lasers and Non-linear Optics1992

REFERENCE BOOKS:

- 1. Yariv, Optical Electronics 2006
- 2. Demtroder, Laser and Spectroscopy 1973

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

3. Latekhor, Non-linear Laser Spectroscopy 1972

I – M. Sc. (PH)	GENERAL PRACTICAL – I	18PPHP11
SEMESTER - I	GENERAL I RACIICAL – I	HRS/WK - 4
CORE PRACTICAL-I		CREDIT - 4

Any 7 out of 10

- 1. Determination of Stephan's constant.
- 2. Young's Modulus by elliptical fringes.
- 3. Young's Modulus by hyperbolic fringes.
- 4. Determination of band gap in semiconductor.
- 5. Hydrogen spectrum Rydberg's constant.
- 6. Viscosity of liquid Meyer's disc.
- 7. Spectrometer Specific charge of an electron.
- 8. Fiber Optics Experiment.
- 9. Ultrasonic diffraction.
- 10. Laser- Thickness of the enamel coating on a wire by diffraction.

I – M. Sc (Physics)	ELECTRONICS DDACTICAL	18PPHP12
SEMESTER - I	ELECTRONICS PRACTICAL – I	HRS/WK - 4
CORE PRACTICAL-I		CREDIT - 4

Any 7 out of 11

- 1. FET Characteristics and amplifier design
- 2. UJT characteristics and applications
- 3. Design of a Regulated Power Supply using IC7805.
- 4. Design full adder and full subtractor and verify its truth table using NAND logic gates.
- 5. Design full adder and full subtractor and verify its truth table using NOR logic gates.
- 6. Construct an astablemultivibrator using transistor and to determine the frequency of oscillation.
- 7. Design an astablemultivibrator using 555 timer.
- 8. Design 4 bit shift register using JK Flip flop.
- 9. Design multiplexer/demultiplexer.
- 10. Op-amp Inverting, non-inverting amplifier Voltage follower- summing, difference, average amplifier differentiator and integrator.
- 11. Application of op-amp as an integrator/differentiator amplifier.

I M.Sc. (PH)		18PPH21
SEMESTER - II	STATISTICAL MECHANICS	HRS/WK-5
CORE – IV		CREDIT-4

To understand the concepts of various ensembles and quantum statistics in detail.

COURSE OUTCOMES (CO):

- CO1: Study the nature of statistical mechanics
- **CO2:** Understand the concepts of various ensembles
- CO3: Study statistics of systems of independent particles
- CO4: Understand the concepts quantum statistics
- **CO5:** Understand the fluctuations and Transport Properties of materials

Relationship Matrix Course Outcomes, Programme Outcomes and Programme Specific Outcomes

SEMESTER -II	COURSE CODE: 18PPH21				5	COURSE TITLE: STATISTICAL MECHANICS					Hours: Credit: 5 4	
Course Outcomes	Pro	ogran	nme C POs	Jutco	nes	Prog	Programme Specific Outcomes PSOs					Mean Score of CO's
COs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	
CO1	3.5	3	3	3.5	3.5	4	3.5	3	3.5	3.5	3.5	3.41
CO2	3.5	3	4	3.5	3.5	4	3.5	3.5	2.5	4	3.5	3.50
CO3	3.5	3.5	3	3	3.5	3.5	4	3.5	4	3.5	3.5	3.50
CO4	4	3.5	2.5	3	3.5	3.5	3.5	4	3.5	4	4	3.55
CO5	3.5	4	3.5	4	4	3.5 3.5 4 3.5 4 3					3.68	
Mean Overall Score								3.53				

Result: The Score for this course is 3.53 (High)

Association	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Interval	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Rating	Very Poor	Poor	Moderate	High	Very High

This course is having **High association** with Programme Outcome and Programme Specific Outcome.

Foundations of Statistical Mechanics: Phase space- States of a system- Micro canonical ensemble- Density of states- Liouville's theorem- Statistical equilibrium- Relation between statistical and thermo dynamical quantities- Boltzmann entropy relation- Classical ideal gas-Entropy of mixing- Gibb's paradox.

UNIT - II

Partition Function: Ensemble-canonical, Micro canonical and grand canonical ensembles - Partition function - Relation between partition function and thermo dynamical quantities - Entropy – Helmholtz free energy – Total energy – Enthalpy - Gibb's potential – pressure - specific heat C_V .

UNIT - III

Statistics of Systems of Independent Particles: Quantum picture – Maxwell Boltzmann, Bose Einstein and Fermi Dirac statistics - Limit of applicability of the three distribution laws -MB ideal gas - Equipartition law of energy - Classical real gas - Maxwell's law of distribution of velocities – most probable speed, mean speed, root mean square speed.

UNIT - IV

Quantum Statistics: Ideal BE gas - Gas degeneracy - BE condensation – Photon gas - Plank's law of radiation - Phonon gas - Einstein and Debye's models for specific heat of solids. Ideal FD gas - Gas degeneracy - Electron gas – Pauli's theory of paramagnetism - White dwarfs

UNIT - V

Fluctuations and Transport Properties: Fluctuations in Energy, pressure, volume & enthalpy - density fluctuation- Correlation of space-time dependent fluctuation- Fluctuation dissipation theorem - Transport properties – Boltzmann transport equation-Random walk-Brownian motion.

TEXT BOOKS:

- Agarwal B.K. and Melvin Eisner, Statistical Mechanics, New Age International Publishers. 2015
- 2. Kerson Huang, Statistical Mechanics, Wiley Eastern Ltd. 1987
- 3. Gupta and Kumar, Elements of Statistical Mechanics, Meerut, PragathiPrakasham 1995

REFERENCE BOOKS:

- 1. Gupta M. C, Statistical Thermodynamics, New Age International Publishers 1995
- Gopal ESR, Statistical Mechanics & Properties of Matter, The Macmillan Co. of India Ltd. 1976

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

3. Laud B.B, Fundamentals of statistical Mechanics, New Age International Publishers 1951

I M.Sc. (PH)		PPH22A
SEMESTER – II	MATHEMATICAL PHYSICS - II	HRS/WK-5
CORE – V		CREDIT-4

OBJECTIVES:

To understand the advanced concept of group theory, partial differential equations, probability and statistics.

COURSE OUTCOMES (CO):

CO1: To give the basic knowledge of tensors
CO2: Get the acquire knowledge of group theory
CO3: Understand the concepts partial differential equation
CO4:Study numerical analysis
CO5:Understand the concepts of probability and statistics

Relationship Matrix Course Outcomes, Programme Outcomes and Programme Specific Outcomes

SEMESTER		COURSE CODE:					COURSE TITLE:					Hours: Credit:
-II	PPH22A					Μ	ATHE	MATIC	AL PH	YSICS-	II	5 4
Course	Pro	ogran	ıme O	outcor	nes	Prog	ramme	e Specif	ic Out	comes]	PSOs	Mean Score
Outcomes			POs									of CO's
COs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	
CO1	5	5	5	5	4	5	5	5	5	5	4	4.818
CO2	5	5	5	5	4	5	5	5	5	5	4	4.818
CO3	5	5	5	5	4	5	5	5	5	5	4	4.818
CO4	5	5	5	5	4	5	5	5	5	5	4	4.818
CO5	5	5	5	5	4	5	5	5	5	5	4	4.818
				Me	an Ov	erall So	core					4.818

Result: The Score for this course is 4.81 (Very High)

Association	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Interval	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Rating	Very Poor	Poor	Moderate	High	Very High

This course is having **VeryHigh association** with Programme Outcome and Programme Specific Outcome.

Tensors: Tensors Under Generalized Coordinate Transformations - Definition of tensor; rank, symmetric tensors, contraction, quotient rule; tensors with zero components, tensor equations, metric tensors and their determinants; pseudo tensors; transformation of $\varepsilon^{ijk}/(g)^{1/2}$

UNIT - II

Group Theory: Definition of groups, subgroups and conjugate classes - Symmetry elements, Transformation, Matrix representation - Point groups - representation of a group - Reducible and irreducible representations - Orthogonality theorem - character of a representation character Table C2v and C3v - Application to IR and Raman active vibrations of XY3 molecules - Symmetry rotations SO(2) and SO(3) groups - Symmetry Unitary SU(2) and SU(3) groups.

UNIT - III

Partial Differential Equation: Formation of Partial differential equations - elimination of arbitrary constants - elimination of arbitrary functions -Singular integral - General integral -Standard types of first order equations – Linear Partial Differential equation of Second and higher order with constant coefficients. One dimensional wave equations, heat equation

UNIT - IV

Special Functions: Gamma and beta functions - Legendre, Bessel, Hermite and Laguerre equations - Generating functions - Series solutions and recurrence relations for Legendre, Bessel, Hermite and Laguerre equations - Physical applications.

UNIT - V

Probability and Statistics: Events - Sample Space - Mathematical and Statistical definitions of Probability - Random variables - Distribution function - Discrete random variable -Continuous random variable – Continuous distribution function –Mathematical expectation and variance- Poisson distribution - Normal distribution – Properties of normal distribution – Mean, Median, Mode.

TEXT BOOKS:

- 1. Engineering Mathematics, M.K. Venkataraman, National Publications, Chennai (2009)
- 2. Fundamentals of Mathematical Statistics by S.C.Gupta, V.K.Kapoor, Sultan Chand and Sons, 11th edition 1982
- 3. Statistical methods by S.P.Gupta Sultan Chand.2011
- 4. Statistics (Theory and Practice) by R.S.N.Pillai& V. Bagavathy -S.Chand& Co.

REFERENCE BOOKS:

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

- 1. Kreyszig E, Advanced Engineering Mathematics.2011
- 2. Reily K.F Hobson M.P. and Bence S.J, Mathematical methods 2006

I M.Sc. (PH)		18PPH23
SEMESTER - II	QUANTUM MECHANICS – I	HRS/WK-5
CORE – VI		CREDIT-4

To understand the concepts of eigen values, 1D problems and related approximation methods.

COURSE OUTCOMES (CO):

CO1: Study the postulates of quantum mechanics

CO2: Understand the concepts one dimensional problems

CO3: Understand the concepts of angular momentum operators & Eigen values.

CO4: Understand the various approximation methods

CO5: Acquire knowledge of relativistic quantum mechanics

Relationship Matrix Course Outcomes, Programme Outcomes and Programme Specific Outcomes

SEMESTER -II		COURSE CODE: 18PPH23					COURSE TITLE: QUANTUM MECHANICS – I					Hours: 5	Credit: 4
Course	Programme Outcomes					-	Specif					<u> </u> -	
Outcomes			POs									Mean	Score
COs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	of C	CO's
CO1	2.1	3.5	2.2	3.3	3.5	3.6	4.3	3.6	4.2	4.3	1.1	3.	24
CO2	3.2	3.8	2.3	3.5	2.8	3.4	4.4	3.2	4.6	4.7	1.2	3.	43
CO3	1.1	3.6	1.2	3.1	3.3	3.8	4.1	3.8	4.4	4.4	1.5	3.	11
CO4	4.0	3.4	1.4	2.6	3.5	3.8	4.6	3.3	4.3	4.1	1.2	3.	29
CO5	2.4	4.0	1.3	3.7	3.6	4.0	4.4	4.3	4.3	4.0	1.1	3.	37
Mean Overall Score									3.3	304			

Result: The Score for this course is 3.30(High)

Associatio	1-20%	21-40%	41-60%	61-80%	81-100%
n					
Scale	1	2	3	4	5
Interval	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Rating	Very Poor	Poor	Moderate	High	Very High

This course is having **High association** with Programme Outcome and Programme Specific Outcome.

Basic Formalism: Postulates of quantum mechanics - Equation of continuity – Erhenfest's theorem- Operator formalism - Linear operators, self adjoint operators - expectation value stationary state - Hermitian operators for dynamical variables - eigen values and functionsorthonormality - commutation relations.

UNIT - II

Applications: One dimensional problems – Wells; Infinite square well and finite square well and barriers; Rectangular barrier - Harmonic Oscillator by Schrödinger equation and operator method (I&III D) - Rigid rotator - Hydrogen Atom.

UNIT - III

Angular Momentum : Angular momentum operator - commutation rules - Eigen value spectrum - Ladder Operators - Momentum Eigen values and Eigen function - L2 Operators Eigen values and Eigen function - Spin matrices and wave function- combination of two angular momentum - Clebsch Gordon coefficients.

UNIT - IV

Approximation Methods: Perturbation theory - Non degenerate and degenerate casesremoval of degeneracy - application to ground state of anharmonic oscillator - Variation method - Hydrogen Molecule - Zeeman and Stark effects - WKB approximation.

UNIT - V

Relativistic Quantum Mechanics: The Klein-Gordon equation- probability density and current density- The Dirac's equation and Dirac's matrices- Plane wave solutions of the Dirac's equation- Spin as an inherent property of an electron- Covariant form of Dirac's equation-Gamma matrices and their properties- Positive and negative energy states and Dirac's explanation.

TEXT BOOKS:

- 1. Introduction to Quantum Mechanics, David J. Griffiths.2005
- 2. Satya Prakash and Singh C.K, Quantum Mechanics.2014
- 3. Gupta S.L, Kumar V, Sharma R.C and Sharma H.V, Quantum Mechanics, Jai Nath& Co. 2007

REFERENCE:

- 1. Feynmann Lectures, Quantum Mechanics, Vol. III. 2013
- 2. Gupta S.L. and Gupta I.D, Advanced Quantum Mechanics and Field, S. Chand & Co.2004

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

I M.Sc. (PH)		EPPH24A
SEMESTER - II	PHYSICS OF NANOMATERIALS	HRS/WK-5
ELECTIVE – IIA		CREDIT- 3

To understand the principle, synthesis and applications of nanomaterials and gain knowledge over various characterization methods.

COURSE OUTCOMES (CO):

CO1:Classify nanoparticles based on various factors.

CO2: Use the different methodologies for synthesis and characterization of nanomaterials **CO3:** Differentiate between pure and composite nanoparticles and their uses

CO4: Select a particular methodology and material for synthesis, characterization and analysis. **CO5:** Design or develop sensors for different applications. Catering to the needs of the recent developments.

Relationship Matrix Course Outcomes, Programme Outcomes and Programme Specific Outcomes

	COURSE CODE: EPPH24A Programme Outcomes POs				COURSE TITLE: PHYSICS OF NANOMATERIALS Programme Specific Outcomes PSOs					Hours: 5 Mean S	3 Score		
Outcomes COs	es PO1 PO2 PO3 PO4 PO5			DO2	DSO1	DSO2	DSO3	PSO4	DSO5		of CO'	S	
CO1	1 .4	3.3	1.1	3 .1	2.3	4.2	4.2	4.1	3.8	4.7	2.3	3.	13
CO2	1.2	3.5	1.3	3.2	2.6	4.4	4.3	4.1	3.9	4.2	2.1	3.	16
CO3	1.6	3.8	1.4	3.2	2.6	4.8	4.6	3.9	3.8	4.0	2.4	3.	28
CO4	1.8	3.8	1.4	3.2	2.4	4.5	4.1	3.9	4.2	3.5	2.1	3.	17
CO5	1.2	3.6	1.1	3.3	2.9	4.1	4.4	4.0	4.1	4.3	2.1	3.	19
	COS 1.2 5.0 1.1 5.5 2.5 4.1 4.6 4.1 4.5 2.1 Mean Overall Score								3.1	86			

Result: The Score for this course is 3.18(High)

Association	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Interval	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Rating	Very Poor	Poor	Moderate	High	Very High

This course is having High association with Programme Outcome and Programme Specific

UNIT – I

Outcome.

(15 Hours) Introduction to Nanoparticles: Introduction – Historical perspective of nanoparticles Zero Dimension, 1D, 2D & 3D nanostructured materials - time and length scale in structures-Influence of nano over micro /macro, size effects, and crystals- mechanical -physical and chemical properties- Energy landscapes basic intermolecular forces – inter dynamic aspects of intermolecular forces.

UNIT – II

Classification of Nanomaterials:

Metal Nanoparticles: Definition of a Nanosystem- classification of nanocrystals; quantum dots, nanowires, and nanotubes, 2D films; Nano mesopores.

Magnetic nanomaterials: Fundamentals of magnetic materials, Dia, Para, Ferro, Ferric, and Super para magnetic materials, Nanostructured Magnetism.

Semiconductor Nanocomposites: Types of Nanocomposites (Metal oxides, ceramic, and Glass), Core-Shell nanoparticles - Types of systems - properties of nanocomposites.

Carbon Nanostructures: Introduction, Fullerenes, C60, CNT, mechanical, optical properties.

UNIT - III

Synthesis of Nanomaterials

Physical methods: Thermal evaporation, Spray pyrolysis, Molecular beam epitaxy (MBE), Physical vapour deposition (PVD), Microwave heating.

Chemical methods: Chemical and co-precipitation, Sol fundamentals - sol - gel synthesis of metal oxides, Microemulsions or reverse micelles, Solvothermal, Sonochemical synthesis, Electrochemical synthesis, Photochemical synthesis, Langmuir - Blodgett (LB) technique, Chemical vapor deposition (CVD).

UNIT-IV

Characterization Techniques

Powder X-Ray Diffraction, Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Scanning TunnellingMicroscope (STM), Atomic Force Microscope (AFM), Scanning Probe Microscopy (SPM), UV - Visible absorption, Impedance measurement. Brunauer - Emmett - Teller (BET) Surface Area Analysis, Energy Dispersive X - ray (EDX), X - ray Photoelectron Spectroscopy (XPS) and Photoluminescence.

UNIT – V

Applications of Nanoscience

Nanophotonics and Devices: Imaging of cancer cells, Biological tags and Targeted nano-drug delivery system. Issues and Challenges of functional Nanostructured Materials for electrochemical Energy Storage Systems.

Nano sensors: Sensors based on physical properties - Electrochemical sensors, Sensors for aerospace, defense and Biosensors. Energy: Solar cells, LEDs and photovoltaic device applications. Photocatalytic applications: Environmental Applications: Air purification, Water purifications and Volatile organic pollution degradation. Carbon nanotubes: Field emission, Fuel cells and Display devices.

(15 Hours)

(15 Hours)

(15 Hours)

TEXTBOOKS:

- 1. Viswanathan, B. (2006). *Structure and Properties of Solid-state materials* (2nd ed.). Alpha Science International.
- 2. Pradeep, T. (2017). *Nano: The Essentials: Understanding Nanoscience and Nanotechnology*. McGraw Hill Education.
- 3. David.B. Williams and C. Barry Carter (2016) *Transmission Electron microscopy : A Textbook for Materials Science*, Springer International Publishing Switzerland
- 4. Hellborg, D. Brunt, R. Hellborg H. J. Whitlow O. Hunderi (1992) SEM Surface characterization A users sourcebook.
- David Brandon & Wayne D. Kaplan (2003) Microstructural characterization of materials, John Wiley & sons, 2nd edition.

REFERENCE BOOKS:

- 1. Ajayan, P. M., Schadler, L. S., & Braun, P. V. (2006). *Nanocomposite Science and Technology*. Wiley-VCH.
- 2. Schmid, G. (2011). Nanoparticles: From theory to application (2nd ed.). Wiley.
- 3. Kulkarni, S. K. (2014). *Nanotechnology: Principles and practices* (3rd ed.). Springer.
- 4. Viswanathan, B. (2009). Nanomaterials. Narosa.
- 5. Bandyopadhyay, A. K. (2009). Nanomaterials (2nd ed.). New Age International.
- 6. Brundle, C. R., Evans, C. A., & Wilson, S. (1992). *Encyclopedia of materials characterization: Surfaces, interfaces, thin films*. Butterworth Heinemann.
- 7. Charles P. Poole, J., & Owens, F. J. (2007). *Introduction to Nanotechnology*. Wiley.
- 8. Schubert, U. S., &Husing, N. (2019). *Synthesis of inorganic materials* (4th ed.). Wiley.
- 9. Milani, P., & Iannotta, S. (2012). *Cluster beam synthesis of Nanostructured materials*. Springer

I M.Sc. (PH)		18EPPH25
SEMESTER – II	MEDICAL PHYSICS	HRS/WK-5
ELECTIVE – IIB		CREDIT- 3

To know about the principle and usage of various physical instrumentation in Medical field.

COURSE OUTCOMES (CO):

CO1: Get the knowledge of production of X-ray images and applications

CO2: Acquire knowledge about vitro and in vivo testing

CO3: Aware of knowledge of ultrasound in medicine

CO4: Get the knowledge about the radiotherapy

CO5: Get the basic ideas of neuroelectrics and neuromagnetics

Relationship Matrix Course Outcomes, Programme Outcomes and Programme Specific Outcomes

SEMESTER						COURSE TITLE:					Hours:	Credit:	
-II		18	BEPPH	125			ME	EDICAI	PHYS	ICS		5	3
Course	Pro	ogran	nme (Outco	mes	Prog	ramm	e Specif	fic Out	comes	PSOs		
Outcomes			POs									Mean	Score
COs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	of C	CO's
CO1	2.1	3.8	2.0	3.5	2.2	4.6	3.2	3.4	4.3	3.4	2.1	3.	14
CO2	2.2	3.6	2.2	3.4	2.1	4.1	3.4	3.8	4.4	3.2	2.1	3.	13
CO3	2.3	2.2	2.4	3.3	2.2	4.4	3.4	3.7	4.6	3.3	2.1	3.	08
CO4	2.4	2.4	2.0	3.1	2.1	4.3	3.2	3.6	4.4	3.5	2.3	3.	02
CO5	2.6	2.4	2.4	2.8	2.4	4.7	3.3	3.8	3.1	3.8	2.1	3.	18
				Me	ean Ov	verall S	core					3.	11

Result: The Score for this course is 3.11 (High)

Association	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Interval	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Rating	Very Poor	Poor	Moderate	High	Very High

This course is having**High association** with Programme Outcome and Programme Specific Outcome.

X-Ray Imaging: Production of X-ray images, attenuation coefficients, choice of suitable energy, contrast, hardware; digital imaging X-ray computed tomography, five generations of scanners, reconstruction methods, CT number, contrast Stretching-Optical Chromatography.

UNIT - II

Nuclear Medicine: In vitro and in vivo testing, gamma rays for imaging, radiopharmaceuticals, the gamma camera, SPECT, PET, examples of clinical use.

UNIT - III

Ultrasound in Medicine: Ultrasound imaging, generation and detection of ultrasound, ultrasound propagation, choice of frequency, A-scan, B-scan, M-mode imaging and echo cardiography. Use of Doppler techniques for blood flow etc. Use of ultrasound in therapy

UNIT - IV

Radiotherapy: Effect of radiation on normal and malignant tissue, cell survival Types of radiotherapy unit: low voltage, orthovoltage, megavoltage, electron beam, brachytherapy Dosimetry: calculation and measurement of dose, % depth dose, isodose lines, scattering effects Treatment planning, fractionation, conformal radiotherapy-Photodynamic Therapy.

UNIT - V

Neuroelectrics and Neuromagnetics: Basic electrophysiology, genesis of electric and magnetic signals Techniques for measurement and imaging of EEG, ECG, MEG and MCG.

TEXT BOOKS:

- 1. Webb. S (Ed), The Physics of Medical Imaging, Hilger 1988
- 2. Dendy. P.P and B Heaton, <u>Physics of Diagnostic Radiology</u>, IOPP 2012
- 3. Brown. B.H et. al., Medical Physics and Biomedical Engineering IOPP 1999

REFERENCE BOOKS:

- 1. HedrickW.R, DL Hykes, and DE Starchmann, <u>Ultrasound Physics and Instrumentation</u>, Mosby 1995
- 2. Steele. G, Basic Clinical Radiobiology, Arnold 2002
- 3. Carlton. R and A. Adler, Principles of Radiographic Imaging, Delmar 2005

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

90 | Page

I – M. Sc. (PH)	CENEDAL DDA CTICAL H	18PPHP21
SEMESTER – II	GENERAL PRACTICAL -II	HRS/WK – 4
CORE – PRACTICAL-II		CREDIT –4

Any 7 out of 10

- 1. Electrical resistance of a metal / alloy by four probe's method.
- 2. F. P etalon using spectrometer.
- 3. Determination of Planck's constant.
- 4. Cauchy's dispersion constant.
- 5. Determination of dielectric constant of solids.
- 6. Ultrasonic interferometer Viscosity and Compressibility of liquids.
- 7. Hall effect experiment Determination of charge carrier density.
- 8. Polarisibility of Liquids using hollow prism.
- 9. Susceptibility of a liquid by Quincke's method.
- 10. Michelson's interferometer.

I – M. Sc (PH)	ELECTRONICS PRACTICAL – II	18PPHP22
SEMESTER - II	ELECTRONICS FRACTICAL - II	HRS/WK – 4
CORE – PRACTICAL -II		CREDIT – 4

Any 7 out of 10

- 1. Op-amp solving simultaneous equations
- 2. Up-down counters Design of modulus counters
- 3. IC 555 Monostablemultivibrator, frequency divider
- 4. Op-amp I to V and V to I converters
- 5. D/A converter using comparator R-2R ladder network.
- 6. Shift registers
- 7. Schmitt trigger
- 8. Wein bridge oscillator using Op-amp.
- 9. Phase shift oscillator using Op-amp.
- 10. Logic Simplification With Karnaugh Maps

II – M. Sc. (PH)	MOLECULAR PHYSICS	18PPH31
SEMESTER – III	MOLECULAR FHISICS	HRS/WK – 5
CORE –VII		CREDIT –4

To understand the classification of molecules and know about the principles and applications of various spectroscopy.

COURSE OUTCOMES (CO):

CO1: Understand the concepts microwave and IR spectroscopy

CO2: Understand concept of Raman spectroscopy and its applications

CO3: Understand the concepts molecular quantum

CO4: Study the electronic spectra of molecules

CO5: Acquire the knowledge of nuclear spectroscopy

Relationship Matrix Course Outcomes, Programme Outcomes and Programme Specific Outcomes

SEMESTER -III			RSE C 8PPH:				COURSE TITLE: MOLECULAR PHYSICS					Hours: Credit: 5 4
Course Outcomes	Pro	ogran	nme O POs	Outcor	nes	Prog	Programme Specific Outcomes PSOs				Mean Score of CO's	
COs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	
CO1	4	4	3.5	4	3.8	3.5	3	3.5	3.5	3.5	3	3.57
CO2	2.5	4	3	4	4	3.5	3.5	3.5	4	4	3.5	3.59
CO3	3.5	3.5	4	3.5	3.5	3.5	4	4	3.5	3	3.5	3.59
CO4	3	4.5	3.5	4	3.5	4	3	3	3.5	4	3.5	3.59
CO5	3	4	2.5	4	4	4	3.5	3.5	4	3.5	4	3.64
				Me	ean O	verall S	core					3.60

Result: The Score for this course is 3.60 (High)

Associatio	1-20%	21-40%	41-60%	61-80%	81-100%
n					
Scale	1	2	3	4	5
Interval	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Rating	Very Poor	Poor	Moderate	High	Very High

This course is having**High association** with Programme Outcome and Programme Specific Outcome.

Microwave (MW) And Infrared (IR) Spectroscopy: Classification of rotating molecules – rotational spectra of linear and symmetric top molecules - Stark modulation MW spectrometer - IR spectrometer – diatomic molecules as harmonic and anharmonic oscillators- rotation –vibration spectra diatomic molecules – P,O and R branches- analysis of symmetric top molecules – Principle, Instrumentation and applications of FTIR.

UNIT - II

Raman Spectroscopy: Raman Effect - Molecular polarisability – Quantum theory – Pure rotational Raman spectra of diatomic and poly atomic molecules – Vibration - rotation Raman spectra of diatomic and polyatomic molecules - Application of Raman spectroscopy for the structure determination of H_2O molecule. Laser Raman spectroscopy – Principle, Instrumentation and applications of FTRAMAN spectroscopy.

UNIT - III

UV-Visible Spectroscopy: Molecular quantum number – coupling of angular momenta - classification of states- electronic spectra of diatomic molecules - Frank Condon principle - Vibrational structure of electronic bands - Rotational fine structure - Fortrat parabola and band head formation- dissociation energy.

UNIT - IV

NMR Spectroscopy: Concepts of NMR spectroscopy- Chemical shift- spin-spin coupling between two and more nuclei - application to structural determination of molecules- spin - spin and spin lattice relaxation processes - FTNMR – measurement of relaxation times by pulse sequence technique.

UNIT - V

ESR, NQR and Mossbauer Spectroscopy: Concept of ESR spectroscopy - effect of L-S coupling - Lande splitting factor 'g' – Hyperfine and fine structure.General principles of NQR spectroscopy, Instrumentation and its applications. Mossbauer spectroscopy - recoilless emission and absorption - Mossbauer spectrometer- Isomer shift – Nuclear quadrupole splitting - Zeeman splitting.

TEXT BOOKS:

- 1. Banwell CN and McCash E.M, 1994, Fundamentals of Molecular Spectroscopy, 4th Edition, Tata McGraw-Hill Publications, New Delhi.
- 2. Aruldas G, 2001, Molecular structure and spectroscopy, Prentice,-Hall of India Pvt.Ltd., New Delhi.
- 3. Satyanarayana D.N, 2004, Vibrational spectroscopy and applications, New age international Publications, New Delhi.

REFERENCE:

- 1. Raymond Chang, 1980, Basic Principles of spectroscopy, McGraw-Hill, Kogakusha, Tokyo.
- 2. Straughan B.P. and Walker, Spectroscopy-Vol 1, Chapman and Hall, London, 1996.

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

3. Hore P.J, Nuclear Magnetic Resonance - Oxford Science Publications 1995.

II – M. Sc. (PH)	QUANTUM MECHANICS – II	18PPH32
SEMESTER – III	QUANTOW MECHANICS – II	HRS/WK – 5
CORE –VIII		CREDIT –4

OBJECTIVES:

To understand the basic concepts of transition probability, scattering theory and advanced ideas on quantization of fields.

COURSE OUTCOMES:

CO1:Study transition under constant perturbation and transition probability

CO2: Understand the concepts of scattering theory

CO3: Study the identical particles.

CO4: Understand the semi classical treatment of radiation

CO5: Acquire knowledge of quantization of fields.

Relationship Matrix Course Outcomes, Programme Outcomes and Programme Specific Outcomes

SEMESTER		COURSE CODE:					(COURS	E TITL	Е:		Hours: Credit:
-III		18PPH32					QUANTUM MECHANICS – II					5 4
Course	Programme Outcomes POs					Prog	Programme Specific Outcomes PSOs					Mean Score
Outcomes		PO1 PO2 PO3 PO4 PO5 PSO1 PSO2 PSO3 PSO4 PSO5 PSO6							DCOC	of CO's		
COs	POI	PO2	PO3	PO4	P05	PS01	PSO2	PSO3	PS04	PS05	PS06	
CO1	4	4	3.5	4	3.5	4	4	3.5	3.5	4	3.5	3.77
CO2	3.5	3.5	3.5	4	4	3.5	4	3.5	4	4	4	3.77
CO3	4	4	4	3.5	4	3.5	3.5	3.5	3.5	4	4	3.77
CO4	4	3.5	3.5	3.5	3.5	3	2.5	4	4	3.5	4	3.55
CO5	3.5	4	3.5	4	3.5	3.5	4	4	3.5	3.5	3.5	3.68
	Mean Overall Score											3.71

Result: The Score for this course is 3.71(High)

Association	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Interval	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Rating	Very Poor	Poor	Moderate	High	Very High

This course is having**High association** with Programme Outcome and Programme Specific Outcome.

UNIT - I (15 Hours) Evolution with Time: Transition under constant perturbation - Transition probability - Fermi Golden Rule- Harmonic perturbation - Adiabatic and sudden approximations - Schrödinger picture - Heisenberg's picture - Interaction picture.

UNIT - II

Scattering Theory: Collision in three dimension and scattering- laboratory and CM reference frames- Scattering Amplitude- Differential scattering cross section- Total scattering cross section- Scattering by spherically symmetrical potentials- partial waves and phase shifts-Born's approximation and its validity- square well, Yukawa potential and Rutherford's formula

UNIT - III

Identical Particles: Symmetric and antisymmetric wave functions – collision of identical particles – spin angular momentum – spin functions for a many – electron system – Slater's determinant – HartreeFock Method.

UNIT - IV

Semiclassical Treatment of Radiation: Spontaneous and induced emission of radiation from semi - classical theory - Einstein's coefficients for induced and spontaneous emission and the relation between them - Electric di-pole and forbidden transition- selection rules

UNIT - V

Quantisation of Fields: Relativistic Lagrangian and Hamiltonian of a charged particle in an electromagnetic field – Lagrangian and Hamiltonian formulations of fields- Second quantization of Klein Gordon field – creation and annihilation operators – commutation rules – Quantization of electromagnetic and Schrodinger's field.

TEXT BOOKS:

- 1. SatyaPrakash,AdvancedQuantum Mechanics.2008
- 2. Gupta S.L, Kumar V, Sharma R.C, and H.V Sharma, Quantum Mechanics, Jai Nath& Co 2007
- 3. Chatwal and Anand, Quantum Mechanics, Himalaya & Co

REFERENCE BOOKS:

- 1. Feynmann Lectures, Quantum Mechanics, Vol.- III 2013
- 2. Schiff L.I, Quantum Mechanics, McGraw Hill 1968
- 3. Gupta S.L, Gupta I.D, Advanced Quantum Mechanics and Field, S. Chand & Co.2010

(15 Hours)

(15 Hours)

(15 Hours)

II – M. Sc. (PH)		18PPH33
SEMESTER – III	CONDENSED MATTER PHYSICS	HRS/WK – 5
CORE – IX		CREDIT –4

To understand the structure, defects and parameters of crystals and also about the classification of solids and its types in detail.

COURSE OUTCOMES:

CO1: Acquire knowledge on crystals and to study crystal structure by x-ray diffraction pattern.

CO2: Explore the various defects in crystals

CO3: Understand the band theory of solids

CO4: Acquire knowledge of superconductors

CO5:Studythe Ferro electric and magnetic systems

Relationship Matrix Course Outcomes, Programme Outcomes and Programme Specific Outcomes

SEMESTER -III		COURSE CODE: 18PPH33				CO	COURSE TITLE: CONDENSED MATTER PHYSICS					Hours: Credit: 5 4
Course Outcomes	Programme Outcomes PO					Prog	Programme Specific Outcomes PSOs					Mean Score of CO's
COs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	01 CO S
CO1	3.5	4	3.5	3	3	3	3	2.5	3.5	3	3.5	3.23
CO2	3.5	4	4	4	4	2.5	2.5	4	4	4	4	3.68
CO3	3	3.5	3	2.5	4	4	4	3.5	3.5	4	4	3.55
CO4	3	3.5	2.5	3.5	4	3.5	4	3.5	4	3.5	3.5	3.50
CO5	4	3.5	4	3.5	3.5	4	3.5	3.5	3.5	3.5	3.5	3.64
				Me	ean Ov	verall So	core					3.52

Result: The Score for this course is 3.52 (High)

Association	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Interval	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Rating	Very Poor	Poor	Moderate	High	Very High

This course is having**High association** with Programme Outcome and Programme Specific Outcome.

Crystal Physics: Unit cell - two and three dimensional Bravis lattices - Miller indices – reciprocal lattices - interaction of X-rays with matter - absorption of X-rays- elastic scattering from a perfect lattice - X-ray intensity and atomic configuration of unit cell - Diffraction of X-rays by crystals - application of reciprocal lattice in diffraction techniques - The Laue's powder and rotating crystal methods - crystal structure factor and diffraction of neutrons by crystals-temperature dependence of reflection lines – Debye - Waller factor.

UNIT - II

Crystal Defects: Crystal imperfections - point defects and phonon defects - ionic conductivity and lattice defects –Colourcentres- F-centres - dislocations-dislocation densities - elementary ideas of crystal growth - grain boundaries - dislocations in plastic deformation and crystal growth - X-rays and electron microscope techniques in crystal imperfection studies

UNIT - III

Electrons in Solids: Electrons in a periodic lattice - Bloch theorem - band theory - Effective mass- Classification of solids – metals - semiconductors and insulators – Phonons - Fermi surface- Brillouin Zones - construction of Fermi surfaces - Experimental methods in Fermi surface studies- Cyclotron resonance – magnetoresistance - De Haas Van Alphen effect.

UNIT - IV

Superconductivity: Phenomena of superconductivity - Meissner effect - Type I and II superconductors- Thermodynamics of superconducting transitions - London's equation - Cooper pairing - BCS theory of superconductivity- Ginzbung - London theory- Josephson theory - D.C and A.C. Josephson effect - Quantum interference - vortices and Type II superconductors – Introduction to High temperature superconductors.

UNIT - V

Multiferroic Systems: Polarization – dielectric constants – interval field – electric polarizability – ferroelectric crystals – displacive transitions – antiferroelectricy – ferroelectric domain – piezo electricity – interaction between magnetic ions – Curie Weiss law – exchange interaction – internal field – spin waves – ferromagnetic domains – anti ferromagnetism – behavior of antiferromagnets above and below Neel temperature.

TEXT BOOKS:

- 1. Kittel. C, 1995, Introduction toSolid State Physics, 7th Edition, John Wiley & Sons
- 2. Pillai S.O, 1997, Solid State Physics, New Delhi, New Age International

REFERENCE BOOKS:

- 1. Blakemore.J.S, 1974, Solid State Physics, 2nd Edition, Philadelphia, W.B Saunders & Co.
- 2. Chaikin and Lubensky, Principles of Condensed Matter Physics2000

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

II – M. Sc. (PH)	MICROPROCESSOR 8086 AND	18EPPH34
SEMESTER – III	MICROCONTROLLER	HRS/WK – 5
ELECTIVE – III A	MICROCONTROLLER	CREDIT –3

To acquire knowledge of Intel 8086 architecture, modular programming and multiprogramming and the idea of interfacing I/O with memory

COURSE OUTCOMES:

CO1: Acquire knowledge of Intel 8086 architecture and instruction set

CO2: Get basis knowledge of modular programming and multiprogramming

CO3: Know the basis of I/o consideration, interrupts and system bus structure

CO4: Acquire knowledge about Intel 8051 micro controller

CO5: Get the idea of Interfacing I/O and memory with 8051

Relationship Matrix Course Outcomes, Programme Outcomes and Programme Specific Outcomes

SEMESTER -III	COURSE CODE: 18EPPH34					N	COURSE TITLE: MICROPROCESSOR 8086 AND MICROCONTROLLER					Hours: 5	Credit: 3
Course Outcomes		Programme Outcomes POsProgramme Specific Outcomes PSOsPO1 PO2PO3 PO4 PO5PSO1 PSO2PSO3 PSO4PSO5PSO6								Score			
COs	1 1	25	1.0	2.2	2.2	4.4	4.2	4 1	15	2.6	2.4		CO's
CO1	1.1	3.5	1.2	3.3	2.2	4.4	4.3	4.1	4.5	3.6	2.4		.14
CO2	1.2	3.8	1.3	3.3	2.1	3.9	3.7	3.7	3.9	3.7	2.2	-	.98
CO3	1.6	3.8	1.2	3.1	2.3	4.8	4.1	3.8	3.8	3.9	2.5	3.	.17
CO4	1.2	3.4	1.6	3.6	2.5	3.9	4.2	4.6	4.3	4.6	2.2	2.	.95
CO5	1.4	4.0	1.1	3.7	2.2	4.0	3.9	4.2	4.5	4.3	2.1	3.	.21
	Mean Overall Score									3.	09		

Result: The Score for this course is 3.09(High)

Association	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Interval	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Rating	Very Poor	Poor	Moderate	High	Very High

This course is having**High association** with Programme Outcome and Programme Specific Outcome.

Physics

Intel 8086 Architecture and Instruction Set: Internal architecture of 8086 - Software model - Internal registers - Minimum mode and Maximum mode system - Instruction set - Addressing modes – Data transfer, Arithmetic, Logical, Shift and rotate instruction – Compare, Jump, Loop, String, Processor control, CALL - RET and stack instructions - Procedures - Assembler Macros - Assembler directives.

UNIT - II

UNIT - I

Modular Programming and Multiprogramming: Linking and relocation – access to external identifiers - procedures - interrupts and their routines - macros - process management and IRMX86 – semaphore operations – common procedure sharing.

UNIT - III

I/O Consideration, Interrupts and System Bus Structure: Programmed I/O – Interrupt I/O - block transfer and DMA - basic 8086 bus configuration - minimum and maximum modes - system bus timings – interrupt priority management – single and multiple 8259

UNIT - IV

Intel 8051 Micro Controller: Introduction - 8 and 16-bit Microcontroller families -Flash series – Embedded RISC Processor – 8051 Microcontroller Hardware – Internal registers – Addressing modes - Assembly Language Programming - Arithmetic, Logic and Sorting operations.

UNIT - V

Interfacing I/O and Memory with 8051: Interfacing I/O Ports, External memory, counters and Timers - Serial data input/output, Interrupts – Interfacing 8051 with ADC, DAC, LED display, Keyboard, Sensors and Stepper motor

TEXT BOOKS:

- 1. Yu-cheng Liu, Glen A. Gibson, 2006, Microcomputer System 8086/8088 Family, Prentice - Hall of India.
- 2. Muhammad Ali Mazidi, 2006, the 8051 Microcontroller and Embedded Systems, First Impression, Pearson Prentice Hall.

REFERENCE BOOKS:

- 1. Barry B Brey, 1995, The Intel Microprocessor 8086/8088, 80186, 80286, 80386 and 80486, 3rd Edition, New Delhi, Prentice Hall of India.
- 2. Uffrenbeck J, The 8086/8088 Family Design, Programming and Interfacing, Software, Hardware and Applications, New Delhi, Prentice Hall of India.1994
- 3. Tribel W.A and Avtar Singh, The 8086/8088 Microprocessors Programming, Interfacing, Software, Hardware and Applications, New Delhi, Prentice Hall of India.1999

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

II – M. Sc. (PH)		18EPPH35
SEMESTER – III	COMMUNICATION PHYSICS	HRS/WK – 5
ELECTIVE – III B		CREDIT –3

To know about the principle, construction and working of various conventional and modern communication systems.

COURSE OUTCOMES:

CO1: Know the basic of FM, SSB & ISB transmission methods.

CO2: Acquire the knowledge of digital modulation and satellite communication.

CO3: Understand the concept of transmission and reception of TV signals

CO4: Acquire knowledge on modern communication system

CO5:Study the basics of fiber optic communication

Relationship Matrix Course Outcomes, Programme Outcomes and Programme Specific Outcomes

SEMESTER - III		COURSE CODE: 18EPPH35					COURSE TITLE: COMMUNICATION PHYSICS					Hours: 5	Credit: 3
Course Outcomes	Programme Outcomes POs Programme Spec						e Speci	ecific Outcomes PSOs				Score	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6		CO's
CO1	1.4	3.3	1.1	3.1	2.3	4.2	4.2	4.1	3.8	4.7	2.3	3.	13
CO2	1.2	3.5	1.3	3.2	2.6	4.4	4.3	4.1	3.9	4.2	2.1	3.	16
CO3	1.6	3.8	1.4	3.2	2.6	4.8	4.6	3.9	3.8	4.0	2.4	3.	28
CO4	1.8	3.8	1.4	3.2	2.4	4.5	4.1	3.9	4.2	3.5	2.1	3.	17
CO5	1.2	3.6	1.1	3.3	2.9	4.1	4.4	4.0	4.1	4.3	2.1	3.	19
	Mean Overall Score											3.1	186

Result: The Score for this course is 3.18 (High)

Association	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Interval	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Rating	Very Poor	Poor	Moderate	High	Very High

This course is having**High association** with Programme Outcome and Programme Specific Outcome.

FM Transmission: Frequency modulation - FM radio frequency band - Direct frequency modulation - modulation index - FM wave equation - Bandwidth - deviation ratio - voltage distribution - power - reactance modulation - FM radio receiver (Block diagram) - SSB Transmission - Advantages and disadvantages - Balanced Modulators - Separation of sidebands - Filter method the phase shift method – ISB – ISB receiver.

UNIT - II

Digital Modulation, Multiplexing and Satellite Communication: Digital Modulation - codes -Data forms - Transmission modes between stations - Modems - Pulse amplitude modulation - Time division multiplexing – pulse width modulation – pulse position modulation – frequency division multiplexing - satellite communication - Geostationary satellites - Communication satellites satellite subsystems - Earth stations - domestic satellites.

UNIT - III

Television: Television transmission - television pictures and cameras - Interlaced scanning and picture resolution - Tonal and colour characteristics of pictures - composite B & W and colour video signals - colour TV transmitter - Television reception - colour receiver plan - Electronic tuner - IF subsystem - receiver sound system - Y signal channel - chroma decoder - Raster circuits - EHT generation - receiver picture tubes - remote control of receiver functions.

UNIT - IV

Modern Communication System: Telephony – Telephone Instruments – Telephone transmitter and receiver - Electronic telephone - Dialler - Ringer -SLIC - advantages and disadvantages of digital transmission – FACSIMILE and cellular radio systems.

UNIT - V

Fiber Optic Communication: Fiber materials – glass fibers – plastic clad glass fiber – plastic fibers - fiber optic communications - propagation theory - numerical aperture - classification of optical fibers - scalar wave equation and solution to step index fiber - loss mechanism in optical fibers signal distortion due to dispersion – amount of dispersion in a step index fiber.

TEXT BOOKS:

- 1. Robert. J Schoenbeck, 1999, Electronic communications, Prentice Hall of India (P) Ltd, New Delhi.
- 2. Gulati R.R, 2000, Composite Satellite and Cable Television, New Age international.

REFERENCE BOOKS:

- 1. Cerin, Introduction to Optical Fibers, McGraw Hill 1982
- 2. B.B. Laud, Laser and Nonlinear Optics, Wiley Eastern Limited 1991
- 3. Louis E. Frenzel Principles of Electronic Communication Systems, McGraw Hill; 4th edition, 2015

(15 Hours)

(15 Hours)

(15 Hours)

Physics

(15 Hours)

II – M. Sc. (PH)	GENERAL PRACTICAL -III	18PPHP31
SEMESTER - III	GENERAL PRACTICAL -III	HRS/WK - 4
CORE – PRACTICAL- III		CREDIT - 4

Any 7 out of 10

- 1. e- Millikan's oil drop method.
- 2. Dielectric constant Lecher Wires.
- 3. Resistivity of semiconductor.
- 4. Biprism Wave length and thickness
- 5. Spectrometer Refractive index of different liquids using Hollow prism.
- 6. Test the validity of the Hartmann's prism dispersion formula using the visible region of mercury spectrum
- 7. Thickness of Mica Sheet Using Edser Butler Method using spectrometer.
- 8. Measurement of wave length of He-Ne laser light using ruler.
- 9. Magnetic Susceptibility, Gouy's method.
- 10. Half shade polarimeter determination of the specific rotation of sugar solution.

II – M. Sc. (PH)	MIROPROCESSOR PRACTICAL – I	18PPHP32
SEMESTER - III		HRS/WK - 4
CORE – PRACTICAL - III		CREDIT - 4

Experiments may be combined to make 12 out of 25

- 1. Program to Increment an 8-bit Number
- 2. Program to Increment a 16-bit Number
- 3. Program to Decrement an 8-bit Number
- 4. Program to Decrement a 16-bit Number
- 5. Program to Find 1's Complement of an 8-bit Number
- 6. Program to Find 1's Complement of a 16-bit Number
- 7. Program to Find 2's Complement of an 8-bit Number
- 8. Program to Find 2's Complement of a 16-bit Number
- 9. Program to Add Two 8-bit Numbers
- 10. Program to Add Two 16-bit Numbers
- 11. Program to Subtract Two 8-bit Numbers
- 12. Program to Subtract Two 16-bit Numbers
- 13. Program to Multiply Two 8-bit Unsigned Numbers
- 14. Program to Multiply Two 16-bit Unsigned Numbers
- 15. Program to Multiply Two 8-bit Signed Numbers
- 16. Program to Multiply Two 16-bit Signed Numbers
- 17. Program to Divide 16-bit Unsigned Number by an 8-bit Unsigned Number
- 18. Program to Divide 16-bit Signed Number by an 8-bit Signed Numbers
- 19. Sum of 'n' consecutive numbers
- 20. Conversion of BCD number to decimal
- 21. Separating Odd and Even numbers
- 22. Curve fitting Least Square fitting with algorithm, flowchart C Program.
- 23. Solution of a Polynomial equation and determination of roots by Newton Raphson Method with algorithm, flowchart C Program
- 24. Program for Addition and Subtraction of two numbers using Microcontroller 8051
- 25. Program for Multiplication and Division of two numbers using Microcontroller 8051

II – M. Sc. (PH)		18PPH41
SEMESTER - IV	NUCLEAR & PARTICLE PHYSICS	HRS/WK - 5
CORE - X		CREDIT - 4

To understand the concepts of various nuclear models, types of nuclear reactions and particle physics.

COURSE OUTCOMES:

CO1: Understand the concepts of various nuclear models

CO2: Study the central force and tensor force in the molecular system.

CO3: Understand the concepts of nuclear reaction

CO4: Study the theory of beta decay

CO5: Acquire theknowledge of particle physics

Relationship Matrix Course Outcomes, Programme Outcomes and Programme Specific Outcomes

SEMESTER		COU	RSE (CODE:			(COURS	E TITL	E:		Hours:	Credit:
- IV		1	8PPH	41		NU	NUCLEAR & PARTICLE PHYSICS						4
Course	Prog	ramm	e Out	tcome	s POs	Prog	gramm	e Speci	fic Out	comes]	PSOs		
Outcomes	201	D 00	200	D 04		2001	-	2000	2004			Mean	Score
COs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	of C	C O's
CO1	3.5	3	3	3.5	3.5	4	3.5	3	3.5	3.5	3.5	3.	41
CO2	3.5	3	4	3.5	3.5	4	3.5	3.5	2.5	4	3.5	3.	50
CO3	3.5	3.5	3	3	3.5	3.5	4	3.5	4	3.5	3.5	3.	50
CO4	4	3.5	2.5	3	3.5	3.5	3.5	4	3.5	4	4	3.	55
CO5	3.5	4	3.5	4	4	3.5	3.5	4	3.5	4	3	3.	68
				Me	ean Ov	verall S	core					3.	53

Result: The Score for this course is 3.53(High)

Association	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Interval	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Rating	Very Poor	Poor	Moderate	High	Very High

This course is having**High association** with Programme Outcome and Programme Specific Outcome.

UNIT - I

Nuclear Models: Liquid drop model- Bohr Wheeler theory fission- Experimental evidence for shell effects- Shell Model-Spin orbit coupling- Magic numbers- Angular Momenta and parities of nuclear ground states- Qualitative discussion and estimates of transition rates- magnetic moments and Schmidt lines- Collective model of Bohr and Mottelson- oblate and prolate deformation of Nucleus.

UNIT - II

Nuclear Force: Central force and tensor forces- Ground state of deuteron- Magnetic and quadrupole moments- Charge independence and spin dependence of nuclear forces-n-p scattering and p-p scattering at low energies-effective range theory- High energy nucleon-nucleon Scattering-Exchange forces- Meson theory of nuclear forces.

UNIT - III

Nuclear Reactions: Types of reactions and conservation laws- energetics of nuclear reactionsreaction dynamics- Q – value equation- scattering and reaction cross section- compound nucleus- scattering matrix- fission and controlled fission reactions, fission reactors – fission explosives - fusion, solar fusion – thermonuclear reactions and weapons.

UNIT - IV

Nuclear Decay: Beta decay- Fermi theory of beta decay- Shape of the beta spectrum- Total decay rate- Angular momentum and parity selection rules- Comparative half-lives- allowed and forbidden transitions- Selection rules- Parity violations- Two component theory of neutrino decay- Detection and properties of neutrino- Gamma decay.

UNIT - V

Particle Physics: Baryons and Mesons- their properties, decay models- Strong, weak and electromagnetic interactions- Hadrons and Leptons, Tau-Theta puzzle- Strangeness- Gellman-Nishijima-relations-SU(3) classifications of Hadrons-Octets and decouplets-elementary ideas of Quarks – New particles.

TEXT BOOKS:

- 1. Tayal D.C, Nuclear Physics, Himalaya Publications.1970
- 2. Pandya M.L, Elementary Nuclear Physics, KedarNath Ram Nath.
- 3. Concepts of Nuclear Physics B.L. Cohen (Wiley-Eastern)1989
- 4. Griffiths D, Introduction to Elementary Particles, Harper and Row.1987

REFERENCE BOOKS:

- 1. Waghmare Y.R, Introductory Nuclear Physics, Oxford-IBH.1981
- 2. Kenneth S. Krane, Introductory Nuclear Physics, Wiley-Eastern 1987

(15 Hours)

Physics

(15 Hours)

(15 Hours)

(15 Hours)

II – M. Sc. (PH)	RESEARCH METHODOLOGY,	18EPPH42
SEMESTER - IV	COMPUTATION METHODS &	HRS/WK - 5
ELECTIVE – IV A	PROGRAMMING	CREDIT - 3

To know about the principles of Scientific research and learn about research writing, computational methods and programming used in research.

COURSE OUTCOMES:

CO1: To understand the Principles of Scientific Research

CO2: To Understand Qualitative & Quantitative Analysis

CO3: Understanding the Plotting& Analyzing Origin

CO4: To Learn the Programming using MATLAB

CO5: To study the Python Programming

Relationship Matrix Course Outcomes, Programme Outcomes and Programme Specific Outcomes

SEMESTER			RSE C				-		E TITL			Hours: 5	Credit:		
- IV		18EPPH42					RESEARCH METHODOLOGY, COMPUTATION METHODS & PROGRAMMING						3		
Course	Programme Outcomes POs Programme Specific Ou									comes]	PSOs	N	G		
Outcomes COs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	Mean Score of CO's			
CO1	1.1	4.1	1.2	3.3	1.0	4.2	4.2	4.1	4.3	4.3	1.0	2.	98		
CO2	1.0	3.3	1.0	3.2	1.0	4.2	4.1	4.2	4.3	4.3	1.0	2.	87		
CO3	1.0	3.4	1.0	3.6	1.1	4.4	4.4	4.6	4.4	4.5	1.1	2.	65		
CO4	1.1	3.3	1.0	3.5	1.0	4.4	4.8	4.1	4.2	4.2	1.0	2.	87		
CO5	1.0	4.0	1.1	3.2	1.0	4.3	4.3	4.1	1.0	4.4	1.1	2.	68		
				Me	ean Ov	verall So	core					2.	81		

Result: The Score for this course is 2.81 (Moderate)

Association	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Interval	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Rating	Very Poor	Poor	Moderate	High	Very High

This course is having **Moderate** association with Programme Outcome and Programme Specific Outcome.

Principles of Scientific Research: Identification of the problem- Literature survey – Reference collection – Familiarity with ideas and concept of investigation –Internet Browsing –Drawing inference from data

UNIT - II

UNIT - I

Analysis and Research Writing: Art of writing a research paper, Synopsis, Research Project and Thesis - Seminar -Power point presentation.

UNIT - III

Origin Graphing and Analysis: Linear curve fitting - non-linear curve fitting - model validation - dataset comparison tools - multi-dimensional data analysis- Peak Analysis

UNIT – IV

Starting with MATLAB, Creating Arrays: Starting with MATLAB, MATLAB Windows – Working in the Command windows –Arithmetic Operations with Scalars – Display formats – Elementary Math Built in functions –Defining Scalar Variable – Creating one dimensional arrays and creating two dimensional arrays.

UNIT – V

Python Programming Environment: Fundamental python programming techniques such as lambdas, reading and manipulating csv files, and the numpy library - Data manipulation and cleaning techniques

TEXT BOOK:

1. Research Methodology – Methods and Techniques (Third Edition) C.R. Kothari and G. Garg 1990

REFERENCE BOOKS:

1. NekaneGuarrotxena, Research Methodology in Physics and Chemistry of Surfaces and Interfaces. 2014

(15 Hours)

Physics

(15 Hours)

(15 Hours)

(15 Hours)

II – M.Sc. (PH)		18EPPH43
SEMESTER - IV	MATERIALS SCIENCE	HRS/WK –5
ELECTIVE – IV B		CREDIT – 3

To understand the classification of materials and learn about the principle, theory and properties of its types.

COURSE OUTCOMES:

CO1: To understand the classification of materials.

CO2: To study various phase diagrams.

CO3: To know the phase transformation and nucleation.

CO4: To learn the electron theory of metals

CO5: To study the electric and magnetic properties of materials.

Relationship Matrix Course Outcomes, Programme Outcomes and Programme Specific Outcomes

SEMESTER		COU	RSE (CODE:	}		(COURS	E TITL	E:		Hours:	Credit:
- IV		18	BEPPH	I 43			MATERIALS SCIENCE						3
Course	Prog	Programme Outcomes POs					gramm	e Speci	fic Out	comes]	PSOs		
Outcomes												Mean	Score
COs												of C	CO's
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6		
CO1	1.1	4.1	1.2	3.3	1.0	4.2	4.2	4.1	4.3	4.3	1.0	2.	.98
CO2	1.0	3.3	1.0	3.2	1.0	4.2	4.1	4.2	4.3	4.3	1.0	2.	.87
CO3	1.0	3.4	1.0	3.6	1.1	4.4	4.4	4.6	4.4	4.5	1.1	2.	.65
CO4	1.1	3.3	1.0	3.5	1.0	4.4	4.8	4.1	4.2	4.2	1.0	2.	.87
CO5	1.0	4.0	1.1	3.2	1.0	4.3	4.3	4.1	1.0	4.4	1.1	2.	.68
	Mean Overall Score											2.	81

Result: The Score for this course is 2.68 (Moderate)

Association	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Interval	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Rating	Very Poor	Poor	Moderate	High	Very High

This course is having **Moderate** association with Programme Outcome and Programme Specific Outcome.

Physics

UNIT - I

Classification of Materials: Engineering materials- Material structure- Types of Bonds and their energies – Bond formation mechanism- Ionic bond-covalent bond examples-ceramicsthermal and electrical properties – Uses-Metallic bond- comparison of bond (dispersion bonds, dipole bonds and hydrogen bonds)-Crystal imperfection –Types of imperfections- Thermal vibrations – point, line and surface imperfections- Frank –Read source.

UNIT - II

Phase Diagrams: Basic terms- solid solutions- Hume - Rothery's rules- intermediate phase-Gibb's Phase rules- Time – temperatures cooling curves- construction of phase diagrams- the Lever rule- eutectic systems- eutectoid - Systems- peritectic and peritectoidSystem-Ternary equilibrium diagrams.

UNIT - III

Transformation: Rate of transformation- nucleation (homogeneous Phase and heterogeneous)-nucleation and growth -applications of phase transformations - micro constituent of iron - carbon system -the allotropy of iron - Iron-Carbon equilibrium diagramformation of Austenite- TTT diagram- transformation Austenite upon continuous cooling.

UNIT - IV

Electron Theory of Metals: Fundamental theories of electrons (Drude and Lorentz theory and Somerfield free electron theory) –electron energies in a metal- Zone theory of solids- energy gaps - density of states - Zones in conductors, insulators and semiconductors - factors affecting electrical resistance of materials.

UNIT - V

Electrical and Magnetic Properties of Materials: Resistivity- conductivity- semiconductors -classification of semiconductors on the basis of Fermi energy and Fermi levels- insulators dielectrics - Ferro electricity - electro strict ion- Piezo electricity - uses of dielectrics - capacitors dielectric strength- magnetic properties of materials -magneto strict ion-magnetic domain soft and hard magnetic materials.

TEXT BOOKS:

- 1. Saxena B.S, Gupta. R.C and Saxena. P.N, Fundamentals of Solid State Physics
- 2. Singhal.R.L, 2000-2001, Solid State Physics, KedarNath Ram Nath& Co, Meerut.
- 3. Kittel C,1992, Introduction to Solid State Physics, New India Publishing House.

REFERENCE BOOKS:

- 1. Raghavan.V, 1990, Materials Science and Engineering a first course, III Ed, PrenticeHall of India.
- 2. Structural M, 1990, Materials Science, Anuradha Agencies & Publishers
- 3. Manchandra. V.K, 1992, a Text Book of Materials Science, New India Publishing House.
- 4. William D. Calister, Fundamentals of Material Science & Engineering, Jr. John William & sons Inc, 2001.

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

II – M. Sc. (PH)		18EPPH44
SEMESTER - IV	ELECTRONIC INSTRUMENTATION	HRS/WK - 5
ELECTIVE – V A		CREDIT - 3

To understand the principle, construction and working of various analytical, digital and electronic instrumentations.

COURSE OUTCOMES:

- **CO1:** Understand the various transducers
- CO2: Study digital instrumentation methods
- CO3: Know the analytical instrumentation techniques
- CO4: Study the bio medical instrumentation
- **CO5:** Apply the knowledge of computer peripherals

Relationship Matrix Course Outcomes, Programme Outcomes and Programme Specific Outcomes

SEMESTER		COURSE CODE:					-	COURS					Credit:		
- IV Course	Drog	18EPPH44 Programme Outcomes POs						NIC INS				5	3		
Outcomes	rrog	ramm		come	5 1 05	Frog	gramm	e Speci	iic Out	comes	508	Maan	Score		
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	Mean Score of CO's			
CO1	3.2	2.6	4	3.5	3	2.8	3.5	3	4	3.1	3.2	3.	26		
CO2	3.4	3.2	3	3.1	3.5	3.6	4.1	3	3	2.6	3.5	3.	27		
CO3	3.5	4	3.2	2.8	3	3.2	3.1	3.5	3.4	3.5	3	3.	29		
CO4	3.2	3.4	3	4	3.1	3.5	3.3	2.8	3.5	3.5	3.6	3.	35		
CO5	4.2	3.5	3.5	3.2	3.5	2.5	3.6	3	4.1	3.4	3.5	3.	45		
				Me	ean Ov	verall So	core					3.	32		

Result: The Score for this course is 3.32 (High)

Association	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Interval	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Rating	Very Poor	Poor	Moderate	High	Very High

This course is having **High** association with Programme Outcome and Programme Specific Outcome.

Physics

(15 Hours)

Transducers: Classification of transducers -Principle, construction and working of Thermistor, LVDT, Electrical strain gauges and capacitive transducers - Measurement of non -electrical quantities -strain, Displacement, temperature, pressure and force.

UNIT - II

Digital Instrumentation: Principle, block diagram and working of Digital frequency counter. Digital multimeter, digital pH meter, digital conductivity meter and digital storage oscilloscope

UNIT - III

Analytical Instrumentation: Principle, block diagram, description, working and application of UV-VIS Spectrometer, IR spectrometer, Flame emission spectrometer and ICP-AES Spectrometer – Basic concept of gas and liquid chromatography.

UNIT - IV

Bio -Medical Instrumentation: Physiological transducers to measure blood pressure, body temperature. Source of Bio- electric potentials – resting potential action potential, bio-potential, block diagram and operation of ECG an EEG –Records.

UNIT - V

Computer Peripherals: Printers – Printer mechanism – Classification - Dot matrix, Ink jet and Laser printer.Basic concept of key board and mouse - Mass data storage - floppy disk -Hard Disk -Operation Dick(CD) - Pen drive (thumb drive).

TEXT BOOKS:

- 1. Rajendra Prasad, Electronic Measurement and instrumentation, Khanna Publications.2001
- 2. Ramambhadran S, Electronic Measurements & Instrumentation, Khanna Publications. 1986
- 3. Dhir S.M, Electronics and instrumentation, Khanna Publications.2009
- 4. Khandpur, Hand Book of Biomedical Instrumentation, TMH. Publications.

REFERENCE BOOKS:

- 1. Gromwell L, Bio medical instrumentation and measurement, Prentice Hall.2010
- 2. John R. Cameran and James G. Skofronick, 1978, Medical physics, John Wiley & Sons.
- 3. Aplen E.L, 1990, Radiation Physics, Prentice Hall.

UNIT - I

(15 Hours)

(15 Hours)

(15 Hours)

II – M.Sc. (PH)		18EPPH45
SEMESTER - IV	ASTRONOMY AND ASTROPHYSICS	HRS/WK - 5
ELECTIVE – V B		CREDIT - 3

To understand the principle of relativity, Einstein's equations and know about the physical cosmology and early universe.

COURSE OUTCOMES:

CO1: Understand the principles of relativity.

CO2: Know the different frame works of relativity

CO3:Study the Einstein's equation and its solutions

CO4: Acquire the knowledge of cosmological models

CO5:Explore the thermal history of the universe

Relationship Matrix Course Outcomes, Programme Outcomes and Programme Specific Outcomes

SEMESTER	COURSE CODE:					COURSE TITLE:					Hours:	Credit:	
- IV	18EPPH45					AST	ASTRONOMY AND ASTROPHYSICS					5	3
Course	Programme Outcomes POs					Prog	Programme Specific Outcomes PSOs						
Outcomes	PO1 PO2 PO3 PO4 PO5					2004		2000	D 201			Mean	Score
COs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	of C	CO's
CO1	4	4	3.5	4	3.5	4	4	3.5	3.5	4	3.5	3.	77
CO2	3.5	3.5	3.5	4	4	3.5	4	3.5	4	4	4	3.	77
CO3	4	4	4	3.5	4	3.5	3.5	3.5	3.5	4	4	3.	77
CO4	4	3.5	3.5	3.5	3.5	3	2.5	4	4	3.5	4	3.	55
CO5	3.5	4	3.5	4	3.5	3.5	4	4	3.5	3.5	3.5	3.	68
				Me	ean Ov	verall So	core					3.	71

Result: The Score for this course is 3.71(High)

Association	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Interval	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Rating	Very Poor	Poor	Moderate	High	Very High

This course is having **High** association with Programme Outcome and Programme Specific Outcome.

UNIT - I

Principles of Relativity: Overview of Special Relativity, space time diagrams, Lorentz metric, light cones, electrodynamics in 4 dimensional languages. Introduction to general relativity (GR), equivalence principle, gravitation as a manifestation of the curvature of space time

UNIT - II

Geometrical Framework of General Relativity: Curved spaces, tensor algebra, metric, affine connection, covariant derivatives, physics in curved space time, curvature - Riemann tensor, Bianchi identities, action principle, Einstein's field equations, energy momentum tensors, energy-momentum tensor for a perfect fluid, connection with Newton's theory.

UNIT - III

Solutions to Einstein's Equations and Their Properties: Spherical symmetry, derivation of the Schwarzschild solution, test particle orbits for massive and massless particles. The three classical tests of GR, blackholes, event horizon - one way membranes, gravitational waves

UNIT - IV

Cosmological Models: Cosmological principle, Robertson-Walker metric, cosmological red shift, Hubble's law, observable quantities - luminosity and angular diameter distances, dynamics of Friedmann-Robertson- Walker models: Solutions of Einstein's equations for closed, open and flat universes.

UNIT - V

Physical Cosmology and The Early Universe: Thermal history of the universe: Temperatureredshift relation, distribution functions in the early universe - relativistic and non-relativistic limits. Decoupling of neutrinos and the relic neutrino background - nucleosynthesis decoupling of matter and radiation; cosmic microwave background radiation - inflation - origin and growth of density perturbations

TEXT BOOKS:

- 1. General Relativity and Cosmology, J. V. Narlikar, Delhi: Macmillan Company of India Ltd. 1977
- 2. First Course in General Relativity, B. F. Schutz, Cambridge University Press. 2009
- 3. Introduction to Cosmology, J. V. Narlikar, Cambridge University Press. 2002

REFERENCE BOOKS:

- 1. Telescopes and Techniques, C.R.Kitchin, Springer. 2014
- 2. Observational Astrophysics, R.C. Smith, Cambridge University Press. 1995
- 3. Electronic Imaging in Astronomy, I.S. McLean, Wiley-Praxis. 1997

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

II – M.Sc. (PH)	PROJECT	18JPPH46
SEMESTER - IV	FROJECT	HRS/WK-8
PROJECT		CREDIT-6

Research Project in Physics

FORMAT FOR PREPARING PROJECT REPORT

Arrangement of contents

- 1. Title Page
- 2. Bonafide Certificate
- 3. Acknowledgement
- 4. Table of contents
- 5. Abstract
- 6. Introduction
- 7. Materials
- 8. Experimental/Computational Method
- 9. Results & Discussion
- 10. Conclusions
- 11. Bibliography/References
- 12. Appendices, if any

BINDING SPECIFICATION

- Report should be found using flexible cover of thick white art paper.
- The Spine for the bound volume should be 2cms width.
- The Cover should be printed in block letters.

MARGIN SPECIFICATION

Top: 4 cmBottom : 3 cmLeft: 4.5 cmTop: 2.5 cm

FONT

Text of the thesis should be in Times New Roman Font style with 12 Font size. All Page numbers should be typed without punctuation on the bottom-center portion of the page. The Preliminary pages (table of contents and abstract) should be numbered in lowercase roman literals.

Reference should be in the format below:

Schott, D. H., Collins, R. N. &Bretscher, A. Secretory vesicle transport velocity in living cells depends on the myosin V lever arm length. J. Cell Biol. **156**, 35-39 (2002).

II – M. Sc. (PH)		18PPH48
SEMESTER - IV	SCIENTIFIC ANALYSIS	HRS/WK-4
CORE		CREDIT-2

To learn the basic concepts and develop the ability to solve problems on various fields of physics.

COURSE OUTCOMES:

CO1:Solve the problems on Mathematical Methods of Physics and Classical MechanicsCO2: Solve the problems on Electromagnetic Theory and Quantum MechanicsCO3:Solve the problems on Thermodynamic and Statistical Physics, Electronics and

Experimental Methods

CO4: Solve the problems on Atomic & Molecular Physics, Condensed Matter Physics **CO5:**Solve the problems on Nuclear and Particle Physics

Relationship Matrix Course Outcomes, Programme Outcomes and Programme Specific Outcomes

SEMESTER	COURSE CODE:					COURSE TITLE:					Hours: Credit:	
- IV	18PPH48					SCIENTIFIC ANALYSIS					4 2	
Course	Programme Outcomes POs					Prog	gramm	PSOs				
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	Mean Score
COs												of CO's
CO1	5	5	5	5	4	5	5	5	5	5	4	4.818
CO2	5	5	5	5	4	5	5	5	5	5	4	4.818
CO3	5	5	5	5	4	5	5	5	5	5	4	4.818
CO4	5	5	5	5	4	5	5	5	5	5	4	4.818
CO5	5	5	5	5	4	5	5	5	5	5	4	4.818
Mean Overall Score									4.818			

Result: The Score for this course is 4.818 (Very High)

Association	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Interval	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Rating	Very Poor	Poor	Moderate	High	Very High

This course is having **Very High** association with Programme Outcome and Programme Specific Outcome

Any One Unit Out of Ten (Problems only) Online mode of Examination

UNIT - I

Mathematical Methods of Physics: Dimensional analysis. Vector algebra and vector calculus. Linear algebra, matrices, Cayley-Hamilton Theorem. Eigenvalues and eigenvectors. Linear ordinary differential equations of first & second order, Special functions (Hermite, Bessel, Laguerre and Legendre functions). Fourier series, Fourier and Laplace transforms. Elements of complex analysis, analytic functions; Taylor & Laurent series; poles, residues and evaluation of integrals. Elementary probability theory, random variables, binomial, Poisson and normal distributions. Central limit theorem. Green's function. Partial differential equations (Laplace, wave and heat equations in two and three dimensions). Elements of computational techniques: root of functions, interpolation, extrapolation, and integration by trapezoid and Simpson's rule, Solution of first order differential equation using Runge-Kutta method. Finite difference methods. Tensors. Introductory group theory: SU (2), O (3).

UNIT - II

Classical Mechanics: Newton's laws. Dynamical systems, Phase space dynamics, stability analysis. Central force motions. Two body Collisions - scattering in laboratory and Centre of mass frames. Rigid body dynamics- moment of inertia tensor. Non-inertial frames and pseudo forces. Variational principle. Generalized coordinates. Lagrangian and Hamiltonian formalism and equations of motion. Conservation laws and cyclic coordinates. Periodic motion: small oscillations, normal modes. Special theory of relativity- Lorentz transformations, relativistic kinematics and mass–energy equivalence. Dynamical systems, Phase space dynamics, stability analysis. Poisson brackets and canonical transformations. Symmetry, invariance and Noether's theorem. Hamilton-Jacobi theory

UNIT - III

Electromagnetic Theory: Electrostatics: Gauss's law and its applications, Laplace and Poisson equations, boundary value problems. Magnetostatics: Biot-Savart law, Ampere's theorem. Electromagnetic induction. Maxwell's equations in free space and linear isotropic media; boundary conditions on the fields at interfaces. Scalar and vector potentials, gauge invariance. Electromagnetic waves in free space. Dielectrics and conductors. Reflection and refraction, polarization, Fresnel's law, interference, coherence, and diffraction. Dynamics of charged particles in static and uniform electromagnetic fields. Dispersion relations in plasma. Lorentz invariance of Maxwell's equation. Transmission lines and wave guides. Radiation-from moving charges and dipoles and retarded potentials

UNIT - IV

Quantum Mechanics: Wave-particle duality. Schrödinger equation (time-dependent and time-independent). Eigenvalue problems (particle in a box, harmonic oscillator, etc.). Tunneling through a barrier. Wave-function in coordinate and momentum representations. Commutators and Heisenberg uncertainty principle. Dirac notation for state vectors. Motion in a central potential: orbital angular momentum, angular momentum algebra, spin, addition of

angular momenta; Hydrogen atom. Stern-Gerlach experiment. Time-independent perturbation theory and applications. Variational method. Time dependent perturbation theory and Fermi's golden rule, selection rules. Identical particles, Pauli Exclusion Principle, spin-statistics connection. Spin-orbit coupling, fine structure. WKB approximation. Elementary theory of scattering: phase shifts, partial waves, Born approximation. Relativistic quantum mechanics: Klein-Gordon and Dirac equations. Semi-classical theory of radiation

UNIT - V

Thermodynamic and Statistical Physics: Laws of thermodynamics and their consequences. Thermodynamic potentials, Maxwell relations, chemical potential, phase equilibrium. Phase space, micro- and macro-states. Micro-canonical, canonical and grand-canonical ensembles and partition functions. Free energy and its connection with thermodynamic quantities. Classical and quantum statistics. Ideal Bose and Fermi gases. Principle of detailed balance. Blackbody radiation and Planck's distribution law. First- and second-order phase transitions. Diamagnetism, paramagnetism, and ferromagnetism. Ising model. Bose-Einstein condensation. Diffusion equation. Random walk and Brownian motion. Introduction to nonequilibrium processes.

UNIT - VI

Electronics and Experimental Methods: Semiconductor devices (diodes, junctions, transistors, field effect devices, homo- and hetero-junction devices), device structure, device characteristics, frequency dependence and applications. Opto-electronic devices (solar cells, photo-detectors, LEDs). Operational amplifiers and their applications. Digital techniques and applications (registers, counters, comparators and similar circuits). A/D and D/A converters. Microprocessor and microcontroller basics

Data interpretation and analysis. Precision and accuracy. Error analysis, propagation of errors. Least squares fitting, Linear and nonlinear curve fitting, chi-square test. Transducers (temperature, pressure/vacuum, magnetic fields, vibration, optical, and particle detectors). Measurement and control. Signal conditioning and recovery. Impedance matching, amplification (Op-amp based, instrumentation amp, feedback), filtering and noise reduction, shielding and grounding. Fourier transforms, lock-in detector, box-car integrator, modulation techniques. High frequency devices (including generators and detectors)

UNIT - VII

Atomic & Molecular Physics: Quantum states of an electron in an atom. Electron spin. Spectrum of helium and alkali atom. Relativistic corrections for energy levels of hydrogen atom, hyperfine structure and isotopic shift, width of spectrum lines, LS & JJ couplings. Zeeman, Paschen-Back& Stark effects. Electron spin resonance. Nuclear magnetic resonance, chemical shift. Frank-Condon principle. Born-Oppenheimer approximation. Electronic, rotational, vibrational and Raman spectra of diatomic molecules, selection rules. Lasers: spontaneous and stimulated emission, Einstein A& B coefficients. Optical pumping, population inversion, rate equation. Modes of resonances and coherence length

UNIT - VIII

Condensed Matter Physics: Bravais lattices. Reciprocal lattice. Diffraction and the structure factor. Bonding of solids. Elastic properties, phonons, lattice specific heat. Free electron theory and electronic specific heat. Response and relaxation phenomena. Drude model of electrical and thermal conductivity. Hall effect and thermoelectric power. Electron motion in a periodic potential, band theory of solids: metals, insulators and semiconductors. Superconductivity: Type-I and type-II superconductors. Josephson junctions. Superfluidity. Defects and dislocations. Ordered phases of matter: translational and orientational order, kinds of liquid crystalline order. Quasi crystals

UNIT - IX

Nuclear and Particle Physics: Basic nuclear properties: size, shape and charge distribution, spin and parity. Binding energy, semi-empirical mass formula, liquid drop model. Nature of the nuclear force, form of nucleon-nucleon potential, charge-independence and charge-symmetry of nuclear forces. Deuteron problem. Evidence of shell structure, single-particle shell model, its validity and limitations. Rotational spectra. Elementary ideas of alpha, beta and gamma decays and their selection rules. Fission and fusion. Nuclear reactions, reaction mechanism, compound nuclei and direct reactions. Classification of fundamental forces. Elementary particles and their quantum numbers (charge, spin, parity, isospin, strangeness, etc.). Gellmann-Nishijima formula. Quark model, baryons and mesons. C, P, and T invariance. Application of symmetry arguments to particle reactions. Parity non-conservation in weak interaction. Relativistic kinematics