

E-mail : josecol27998@gmail.com Website: www.sjctnc.edu.in

1.1.2: The programmes offered by the institution focus on employability / entrepreneurship / skill development and their course syllabi are adequately revised to incorporate contemporary requirements

M.Sc. COMPUTER SCIENCE

I M.Sc (CS)		PCS702S
SEMESTER – I	OBJECT ORIENTED ANALYSIS AND DESIGN WITH UML	HRS/WK – 4
CORE – 2		CREDIT – 3

To enable the students to learn the Software development methods and tools related with Object Oriented Technology.

Course Outcomes (CO):

After learning this course, the students should be able to expose

- **CO1:** Ability to analyze and overview of object-oriented software development.
- **CO2:** Ability to know the object-oriented methodologies and Frameworks.
- **CO3:** Design databases to support the software applications and document them using UML class diagrams
- **CO4:** Develop UML sequence diagrams from robustness diagrams
- **CO5:** Ability to learn software quality Assurance and Debugging principles.

Relationship Matrix Course Outcome, Programme Outcome and Programme Specific Outcome

SEMESTER I	COURSE CODE: PCS702S					COURSE TITLE: OBJECT ORIENTED ANALYSIS AND DESIGN WITH UML					HOURS: CREDITS: 4 3		
COURSE	PRO	PROGRAMME OUTCOME(PO)					RAMME	SPECIFI	MEAN SCOR	E OF CO			
00100112	PO 1	PO 2	PO 3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	4.1		
CO1	4	4	5	5	4	4	4	4	4	3			
CO2	4	4	3	4	3	4	4	3	3	4	3.6		
CO3	4	4	3	3	4	4	4	3	4	4	3.7		
CO4	4	4	3	3	3	4	4	3	4	4	3.6		
CO5	4	4	3	3	3	4	4	3	4	4	3.6		
	Mean Overall Score										3.7		

Result: The Score of this Course is 3.7(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

	[12 Hrs]
Overview Of OOSD: Introduction – Methodology.	
Object Basics : Objects- Attributes- Encapsulation and Information Hiding – Cl	lass Hierarchy
 Polymorphism-Object Relationships and Associations-OOSDLC – T 	The Software
Development Process.	
UNIT – II Object Oriented Methodologies: Introduction – Rumbaugh et al.'s Obj Technique – The Booch Technology – Jacobson et al. Methodologies – Patterns – The Unified Approach.	U U
UNIT – III	[11 Hrs]
Unified Modeling Language: Introduction – UML Diagrams – UML Class Diagrams	am – Use Case
Diagram – UML Dynamic Modeling – UML Extensibility – UML Meta model.	
UNIT – IV Object Oriented Analysis: Introduction – Use Case Model – Develop Documentation. OBJECT ORIENTED DESIGN : Introduction – Axioms – Design Patterns.	U
UNIT – V	[12 Hrs]
Software Quality Assurance : Introduction-Quality Assurance tests – Test – Impact of Object Orientation on Testing – Test Cases – Test Plan – Conti	

- Myer's Debugging Principles

Text Book:

1."Object Oriented Systems Development", Ali Bahrami - Irwin-McGraw Hill, New Delhi, McGraw Hill Education (1st edition), 2017

Reference Books:

- 1. "Object –Oriented analysis and Design with Applications", Grady Booch Pearson Education Ninth Indian Reprint 2002, First Impression 2006.
- 2. "The Unified Modeling Languages User Guide", Grady Booch, James Rumbaugh and Ivar Jacobson Addison Wesley Fourth Indian Reprinting 2000, Fifth Impression 2007.

I M.Sc(CS)		PCS703S
SEMESTER – I	ADVANCED JAVA PROGRAMMING	HRS/WK – 4
CORE – 3		CREDIT – 4

- This course provides an in-depth knowledge of Advanced Java language and programming.
- Implementing Java components
- Practicing RMI, JDBC
- ✤ Ability to understand Multithreading

Course Outcomes (CO):

After learning this course, the students should be able to expose

CO1: Ability to gain knowledge on fundamentals of java and clear view on Object and Classes.

CO2: Ability to apply knowledge on problems exhibiting packages, Interfaces, Exceptions, Multithreading **CO3:** Ability to connect to database and working with AWT

CO4: Ability to access networks and to work with TCP/IP and UDP

CO5: Ability to apply basic Servlets and RMI methods.

Relationship Matrix Course Outcome, Programme Outcome and Programme Specific Outcome

SEMESTER I	C	OURS	E COD	DE: PCS7	035	ADV		URSE TI JAVA PR	ГLE : OGRAMN	AING	HOURS: 4	CREDITS: 4
COURSE OUTCOME	PROGRAMME OUTCOME(PO)					PROGRAMME SPECIFIC OUTCOME(PSO)					MEAN SCOR	E OF CO
	Р	PO	PO	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5		
	0	2	3								3.5	
	1											
CO1	2	3	3	4	4	4	4	4	3	4		
CO2	3	4	3	4	3	4	4	3	3	4	3.5	
CO3	4	4	3	3	4	4	4	3	4	4	3.7	
CO4	4	4	3	3	3	5	5	3	4	4	3.8	
CO5	4	4	3	3	3	5	4	3	4	4	3.7	
	Mean Overall Score											

Result: The Score of this Course is 3.6(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

St. Joseph's College of Arts & Science (Autonomous), Cuddalore-1	Page 85

UNIT- I	[12 Hrs]
Introduction To Java: Features of Java - Data types – Variables – Operators – A	rrays – Classes
- Objects - Constructors - Overloading method - String class - Inheritance - Ove	rriding Method
– Using super - Abstract class - Packages – Access protection.	
UNIT-II	[13 Hrs]
Multithreading: Packages - Access protection- Importing packages	– Interfaces
– Exception handling – Throw and throws - Thread – Multithreading.	
UNIT-III	[12 Hrs]
Ava Database: Java Database-Working with windows using AWT Classes -	AWT Controls
- Layout Managers and menus- Swing- Introduction to Swing- Swing Architec	ture- Examples
for Swing-JDBC/ODBC driver-MSACCESS connection-A complete example.	
1	
UNIT-IV	[11 Hrs]

UNI Networking: Sockets - Inet Address - IP Address - Port number - Client/Server computing TCP/IP - TCP client - server handling multiple clients -UDP-UDP Server-UDP Client -Multithreaded clients.

UNIT-V SERVLETS AND RMI: Servlet architecture-HTML support - Servlet Installation - Servlet API Distributed computing – RMI architecture - parameter in RMI - RMI Client-side callbacks - Installing RMI systems - serializing remote objects.

Text Books:

- 1. "Advanced Java Programming", Jeffrey C. Rice, Irving Salisbury-McGraw Hill-1997.
- 2. "JAVA: How to program", Paul J. Deitel, Harvey Deitel, Prentice Hall publication, tenth edition, 2014.

Reference Book:

1. "JAVA: Complete reference", Herbert Schildt, McGraw Hill, Ninth Edition, 2017

[**12**Hrs]

Computer Science

I M.Sc (CS)		PCS704S
SEMESTER – I	UNIX NETWORK PROGRAMMING	HRS/WK – 4
CORE – 4		CREDIT – 4

Objective:

To make the student aware of all concepts related to Net Working and make them well versed in Unix networking programming.

Course Outcomes (CO):

CO1: Ability to gain knowledge about basics of UNIX, files and file types.

CO2: Ability to understand UNIX process and process identifiers

CO3: Ability to know about SVR4 and different file locking methods.

CO4: Ability to know about function of TCP and UDP sockets.

CO5: Ability to the uses of TCP and UDP echo client server.

Relationship Matrix Course Outcome, Programme Outcome and Programme Specific Outcome

SEMESTER		COURS	SE CODE:	PCS704S			COURSE TITLE:				HOURS	CREDITS
I						UN	IX NETW	ORK PRO	GRAMM	ING	:	:
											4	4
COURSE OUTCOME		PROGRA	MME OU	E OUTCOME(PO) PROGRAMME SPECIFIC OUTCOME(PSO)								SCORE OF CO
	PO	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5		
	1										3.5	
CO1	4	3	4	3	4	4	3	4	3	3		
CO2	4	4	3	3	4	4	3	4	4	4		3.7
CO3	3	3	3	3	3	3	4	4	3	4		3.3
CO4	4	3	4	4	3	3	4	4	4	3		3.6
CO5	3	3	3	3	3	4	3	4	4	4		3.4
	Overall Score											3.5

Result: The Score of this Course is 3.5(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

Computer Science

UNIT-I Introduction & File System: Overview of UNIX OS - File I/O - File Descriptors - File sharing - Files and directories – File types - File access permissions - File systems - Symbolic links - Standard I/O library - Streams and file objects - Buffering - System data files and information - Password file - Group file - Login accounting - system identification.

UNIT-II

Processes: Environment of a UNIX process - Process termination - command line arguments - Process control - Process identifiers - Process relationships terminal logins - Signals -threads.

UNIT-III

Inter-process Communication: Introduction - Message passing (SVR4)- pipes - FIFO - message queues - Synchronization (SVR4) - Mutexes - condition variables - read - write locks - file locking - record locking -semaphores - Shared memory (SVR4).

UNIT-IV

Sockets: Introduction - transport layer - socket introduction - TCP sockets - UDP sockets - raw sockets - Socket options - I/O multiplexing - Name and address conversions.

Text Books:

- 1. "Advanced programming in the UNIX environment", W. Richard Stevens- Addison Wesley, 1999 (Unit 1,2 & 3)
- 2. "Unix Network Programming Volume-1: The Sockets Networking API", W. Stevens, Bill Fenner, Andrew Rudoff, 3rd Edition- Pearson education, 2003(unit 4 & 5)

Reference Books:

- 1. "The 'C' Odyssey Unix The open Boundless C", Meeta Gandhi, Tilak Shetty and Rajiv Shah - BPB Publications (1st Edition) 1992.
- 2. "UNIX network programming: Intercrosses Communications", Stvens, Vo 12, (2nd edition) - PHI.1999.

[12 Hrs]

[12 Hrs]

[12 Hrs]

[10 Hrs]

UNIT-V [14 Hrs] Applications: Debugging techniques - TCP echo client server - UDP echo client server - Ping -Trace route - Client server applications like file transfer and chat

I M.Sc (CS)	COMPUTER SYSTEM ARCHITECTURE For the students admitted from the year 2014	EPCS705Q
SEMESTER – I		HRS/WK – 4
Elective – 1A	For the students admitted from the year 2014	CREDIT – 3

To learn the advanced concepts of Computer Architecture.

Course Outcomes (CO):

CO1: Examine the performance of different parallel model.

CO2: Develop the pipeline concept for a set of instructions.

CO3: Discriminate the performance of pipeline and non-pipeline.

CO4: Understand the concept of parallel and scalable architecture.

CO5: Compare the properties of shared memory and distribute multiprocessor System and cache coherency.

Relationship Matrix Course Outcome, Programme Outcome and Programme Specific Outcome

SEMESTER		COURS	SE CODE:	EPCS7050	2		CO	URSE TIT	'LE:		HOURS	CREDITS
I						COM	PUTER SY	YSTEM AI	RCHITEC	TURE	:	:
											4	3
COURSE OUTCOME		PROGRA	AMME OU	TCOME(P	'O)	PROG	RAMME S	OUTCOME(PSO) MEAN SCORE OF CO				
	PO	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5		
	1											
CO1	3	3	4	3	2	4	4	3	4	4		3.4
CO2	4	4	4	3	2	4	4	3	4	4		3.7
CO3	3	3	3	4	2	4	4	3	3	3		3.2
CO4	3	3	3	3	2	4	4	3	3	3		3.1
CO5	3	3	3	4	2	4	3	3	3	3		3.1
				0	verall Scor	e				Mean		3.2

Result: The Score of this Course is 3.2(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Poor	Moderate	Good	Very Good	Excellent

Computer Science

UNIT-I

Parallel Models: Multiprocessors and Multicomputer – Multi vector and SIMD Computers – PRAM and VLSI Models – Conditions of Parallelism: Data and Resource Dependences.

UNIT-II

Processors And Memory Hierarchy: Advanced Processor Technology: Instruction-Set Architecture, CISC, RISC Scalar Processor – Memory Hierarchy Technology: Hierarchical Memory Technology, Inclusion, Coherence and Locality – Virtual Memory Technology - Cache Memory Organization.

UNIT-III

[13 Hrs] Pipelining And Superscalar Techniques: Linear Pipeline Processors – Non- Linear Pipeline Processors – Instruction Pipeline Design – Arithmetic Pipeline Design.

UNIT-IV:

[12 Hrs] Parallel And Scalable Architecture: Multiprocessor System Interconnects - Vector Processing Principles - SIMD Computer Organizations: Implementation Models.

UNIT-V

Scalable, Multithreaded: Latency Hiding Techniques: Shared Virtual Memory, Prefetching

Techniques, Distributed Coherent Caches – Principles of Multithreading: Multithreading

Issues and solutions, Multiple Context Processors.

Text Books:

- 1. "Advanced Computer Architecture- Parallelism, Scalability, Programmability", Kai Hwang, - McGraw Hill- 1993.
- 2. "Advanced Computer Architecture- Parallelism, Scalability, Programmability", Kai Hwang, McGraw Hill- Second Edition-2000.

Reference Books:

- 1. "Computer System Architecture", M.M.Mano-PHI(3rd Edition), 1994.
- 2. "Computer Architecture and Parallel Processing", Hwang Briggs- McGraw Hill-1985.
- 3. "Computer Organization and Architecture Designing for Performance", William Stallings - PHI, 2000.

[10 Hrs]

[13 Hrs]

[12 Hrs]

I M.Sc(CS)	ARTIFICIAL NEURAL NETWORKS	EPCS705A
SEMESTER – I		HRS/WK – 4
ELECTIVE – 1B		CREDIT – 3

- ✤ To enable the student to understand the concepts and principles of fuzzy and Neural Networks.
- Investigate some common models and their applications.

Course Outcomes (CO):

CO1: Understand the basics of Artificial Neural Network

CO2: Able to know about Architecture and Training of ANN

CO3: Understand the concept of Memory and learning process of ANN

CO4: Understand the concept of unsupervised learning

CO5: Learn and improve the skill about Simulation of Neural Network

Relationship Matrix Course Outcome, Programme Outcome and Programme Specific Outcome

SEMESTER I		COURS	SE CODE:	EPCS705	Ā	ART		URSE TIT NEURAL		RKS	HOURS: 4	CREDITS: 3
COURSE OUTCOME	I	PROGRA	MME OU	FCOME(I	20)	PROGR	AMME S	E(PSO)	MEAN SCORE OF CO			
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5		
CO1	4	3.5	4	4	4	5	4.5	4.3	4.2	4.5		4.2
CO2	4	4	3	3	4	4.3	4.3	4	3	4		3.7
CO3	4	4	4	4	3	4	4	4	3	4		3.8
CO4	4	4	3	4	4	4	4	4	3	4		3.8
CO5	4	4	4	4	4	4	4	4	4	4		4.0
				Mean	Overall S	core						3.9

Result: The Score of this Course is 3.9(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

UNIT I

[10 Hrs] INTRODUCTION: Definition - fundamental concepts - applications - advantages and disadvantages – classifications – biological neural network – artificial neural structure activation functions – adding bias – perception – MLP.

UNIT II

FEED FORWARD ANNs: Structure – delta rule – architecture and training – radial basis function – time delay NN.

UNIT III

ATTRACTOR ANNs: Associative learning – attractor NN – linear associative memory - Hopfield network - content addressable memory - simulated annealing - Boltzmann machine - bidirectional associative memory.

UNIT IV

UNSUPERVISED ANNs: Clustering procedures - C-Means algorithm - learning vector quantization – MAXNET – self-organizing feature maps – adaptive resonance architectures.

UNIT V

ANN SIMULATION IN MATLAB: Creating a custom neural network - initializations - setting weights and bias – using different transfer functions – using training parameters – simulating and plotting network – designing a complete FF neural network (supervised) – designing self organizing maps (unsupervised).

Text Books:

- 1. "Artificial Neural Networks", Robert J. Schalkoff-New Delhi, McGraw Hill, 1997.
- 2. "Neural Networks: A Classroom Approach", Satish Kumar- McGrawHill, New Delhi, 2004.
- 3. "Neural Networks, Fuzzy Logic and Genetic Algorithms Synthesis and Applications", S. Rajasekaran, G. A. VijayalakshmiPai - Prentice Hall, India, 2003.
- 4. "Fundamentals of Neural Networks", LaureneFausett Prentice Hall, 1994.
- 5. "Neural Network in Computer Intelligence", Limin Fu- McGraw Hill International, 1994.

Reference Books:

- 1. "Neural Networks, S.Haykin", A Comprehensive Foundation. Prentice Hall, 1999
- 2. "Neural Networks: Algorithm, Applications and Programming Techniques", Freeman, A. James and Skapura, M. David. California, Addison-Wesley Longman, 2002.
- 3. "Principles of Neuro Computing for Science of Engineering. Fredric", M. Ham, Ivica Kostunica- Tata McGraw Hill, 2002

Computer Science

[10 Hrs]

[13 Hrs]

[13 Hrs]

[14 Hrs]

I M.Sc (C.S)	MODERN OPERATING SYSTEM	EPCS705C
SEMESTER –I		HRS/WK-4
ELECTIVE-1C		CREDIT-3

To provide a clear description of the fundamental concepts in an operating system and design principles that is applicable to a variety of distributed operating system.

Course Outcomes (CO):

CO1: Ability to gain knowledge about basics of Computer System Structures.

CO2: Ability to understand Process Management &CPU Scheduling

CO3: Ability to know about Distributed Computing System.

CO4: Ability to know about function of Synchronization

CO5: Ability to learn the uses of security

Relationship Matrix Course Outcome, Programme Outcome and Programme Specific Outcome

SEMESTER I	CO	URSE	CODE:	EPCS70	95C	М		URSE TI OPERATI	TLE: ING SYST	ГЕМ	HOURS: 4	CREDITS: 3	
COURSE OUTCOME	PRO	GRAM	ME OU	TCOME	E(PO)			AMME S TCOME(MEAN SCOR	E OF CO		
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5			
CO1	3	4	3	3	3	4	4	3	4	3	3.4		
CO2	4	4	3	4	3	4	3	4	4	3	3.6		
CO3	4	4	3	3	3	3	4	3	4	4	3.5		
CO4	3	4	3	3	3	3	3	4	4	4	3.4		
CO5	4	4	3	3	3	4	4	3	3	4	3.5		
	Mean Overall Score										3.5		

Result: The Score of this Course is 3.5(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

Computer Science

UNIT -I

[12Hrs] **INTRODUCTION:** Computer-System Operation– Storage Hierarchy– General System Architecture, OPERATING SYSTEM STRUCTURES: System Components – System Calls Virtual Machines-System Generation.

UNIT- II

PROCESS MANAGEMENT: Processes-Process Concept - Operation on Processes- Inter - Process Communication.

CPU SCHEDULING: Basic Concepts–Scheduling Algorithms–Real Time Scheduling-Process Synchronization-Background-Critical- Selection Problem-Semaphores -Deadlocks-System Model– Methods for Handling Deadlocks–Deadlock Avoidance–Recovery from Deadlock.

UNIT-III

DISTRIBUTED COMPUTING SYSTEM: Evolution- Models- Distributed Operating System Designing DOS Distributed Computing Environment. Issues in _ **COMMUNICATION IN DISTRIBUTED SYSTEM:** Protocols-Features of Good Message Passing System- Issues in IPC by Message Passing-Synchronization-Buffering- Process Addressing-Failure Handling- Group Communication.

UNIT-IV

SYNCHRONIZATION: Clock Synchronization- Event Ordering- Mutual Exclusion - Deadlock - Election Algorithms. PROCESS MANAGEMENT: Process Migration-Threads.

UNIT- V

[12 Hrs]

SECURITY: Potential Attacks to Computer Systems – Cryptography–Authentication- Access Control-Digital Signatures-Design Principles.

INTERPROCESS COMMUNICATION: Process Tracing-System VIPC -Sockets. MULTIPROCESSOR SYSTEMS: Problem of Multiprocessor Systems-Solution with Master and Slave Processors-Solution with Semaphores.

Text Books:

- 1. "Operating System Concepts Abraham Silberschatz and Peter Baer Galvin", Addison Wesley (4th Edision)- New York, 1999, Unit I & II
- 2. "Distributed Operating Systems Concepts and Design", Pradeep K. Sinha -Prentice Hall, New Delhi, 2004.Unit III, IV & V.

Reference Book:

1. "Modern Operating Systems", Andrew S Tanaenbaum-PHI, New Delhi, 1997.

[12 Hrs]

[12 Hrs]

[12 Hrs]

I M.Sc(CS)		PCSP101T
SEMESTER – I	ADVANCED JAVA PROGRAMMING	HRS/WK – 5
CORE PRACTICAL - I		CREDIT – 3

- * This provides an in-depth knowledge of Advanced Java language and programming
- Gain an in-depth understanding of database programming in Java using JDBC.
- Learn how to do distributed programming in Java using RMI and CORBA.

Course Outcomes (CO):

After learning this course, the students should be able to expose

CO1: Ability to work with different input getting parameters.

CO2: Ability to handle problems using Thread concepts.

CO3: Ability to access Network classes and its methods

CO4: Ability to work with database with different commands

CO5: Ability to handle AWT methods and event handlings & implementing RMI Concepts

Relationship Matrix Course Outcome, Programme Outcome and Programme Specific Outcome

SEMESTER I	COURSE CODE: PCSP101T COURSE TITLE: Practical- ADVANCE PROGRAMMING								AVA		HOURS: 5	CREDITS: 3		
COURSE OUTCOME	PROGRAMME OUTCOME(PO)					PROG	RAMME	SPECIF	MEAN SCO	RE OF CO				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5				
CO1	4	3	2	3	4	4	4	3	3	3	3.3			
CO2	4	4	2	3	4	3	4	5	3	4	3.	6		
CO3	4	3	2	4	4	2	4	2	4	4	3.	3		
CO4	4	2	2	2	4	4	4	4	4	4	3.	6		
CO5	4	4	2	3	4	3	4	3	4	3	3.4			
	Mean Overall Score										3.	4		

Result: The Score of this Course is 3.4(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

ADVANCED JAVA PROGRAMMING PRACTICAL

- 1. Write a java program to find area perimeter using Buffered Reader class.
- 2. Write a java program to implement Multithreading concepts.
- 3. Write a java program to implement an application for File Stream using Sequential file.
- 4. Write a program to print the port, protocol, host, and file name from the given URL.
- 5. Write a program to implement Client and Server application using TCP/IP.
- 6. Write a program to display the IP Address of a given Host Machine.
- 7. Write a program for Remote Command Execution using TCP/IP.
- 8. Write a program for Storing and Retrieving Email Addresses using JDBC.
- 9. Write a program to print student details using JDBC.
- 10. Working with Frames and Various Controls.
- 11. Incorporating Graphics
- 12. Font animation using Applets Interface.
- 13. Write a program to implement addition operation using RMI.

WEB REFERENCES:

- 1. https://www.codewithc.com/category/java-tutorials
- 2. <u>https://www.codewithc.com/category/projects/java-projects</u>

I M.Sc(CS)		PCSP102T
SEMESTER – I		HRS/WK – 5
CORE PRACTICAL-2	ADVANCED UNIX PROGRAMMING	CREDIT –3

To make the student aware of all concepts related to Unix networking programming.

Course Outcomes (CO):

After learning this course, the students should be able to expose

CO1: Ability to gain knowledge about basics of shell script.

CO2: Ability to understand UNIX process and process identifiers

CO3: Ability to know about the grep statements in Shell Scripts.

CO4: Ability to know about functions of shell scripts.

CO5: Ability to write Shell Scripts for search all sub-directories and its current directory

Relationship Matrix Course Outcome, Programme Outcome and Programme Specific Outcome

SEMESTER I		COUR	SE CODE:	: PCSP102	2Т	ADV	CO VANCED U	URSE TIT JNIX PRO		ING	HOURS: 5	CREDITS: 3		
COURSE OUTCOME	1	ROGRA	MME OU	FCOME(I	PO)	PROGR	AMME S	PECIFIC	OUTCOM	IE(PSO)		SCORE OF CO		
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5				
CO1	4	4	4	4	4	4	4	4	3	3		3.8		
CO2	3	4	3	4	4	4	4	4	3	4		3.7		
CO3	3	4	3	4	3	4	4	4	3	4		3.6		
CO4	4	3	3	4	3	4	4	4	3	4		3.6		
CO5	4	4	4	4	4	4	4	4	4	3		3.7		
	Mean Overall Score											3.6		

Result: The Score of this Course is 3.6(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

ADVANCED UNIX PROGRAMMING

- 1. Write a shell script to copy, rename and print multiple files using choice menus.
- 2. Write a shell script to display logged in users who are using high CPU percentage.
- 3. Write a shell script to list processes based on CPU percentage and memory un usage.
- 4. Write a shell script to display total used and free memory space.
- 5. Write a shell script that takes as command-line input a number n and a word. The program should then print the word n times, one word per line.
- 6. Write a shell script using the following statements.
 - a. While-loop
 - b. For-loop
 - c. If-then-else
 - d. Switch
- 7. Write a shell script using grep statement.
- 8. Write a shell script that can search all immediate sub-directories of the current directory for a given file and then quit if it finds one.

WEB REFERENCE:

1. <u>https://www.tutorialspoint.com/unix/index.htm</u>

I M.Sc(CS)		PCS806S
SEMESTER – II	SOFTWARE TESTING	HRS/WK – 4
CORE -5		CREDIT – 3

To enable the students to learn the fundamentals of Software Planning and Testing.

Course Outcomes (CO):

After learning this course, the students should be able to expose

CO1: Ability to know the Purpose of Software Testing

CO2: Ability to understand the Principles of Testing

CO3: Ability to acquire knowledge about the types of testing

CO4: Ability to apply basic test of object-oriented systems

CO5: Ability to learn the Organizations Structures for Testing Teams

Relationship Matrix Course Outcome, Programme Outcome and Programme Specific Outcome

SEMESTER II								STING	HOURS: 4	CREDITS: 3				
COURSE OUTCOME	J	PROGRAMME OUTCOME(PO) PROGRAMME SPECIFIC OUTCOME(PSO)										MEAN SCORE OF CO		
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5				
CO1	3	3	3	2	4	3	3	2	3	4	3.0			
CO2	3	4	3	4	4	3	3	2	3	4		3.3		
CO3	3	3	4	3	3	3	3	2	4	3		3.1		
CO4	4	3	4	3	3	3	3	3	2	3		3.1		
CO5	3	3	4	3	3	3	3	3	3	4	3.2			
	Mean Overall Score											3.1		

Result: The Score of this Course is 3.1(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

UNIT-I

INTRODUCTION: Purpose of Software Testing- Is Complete Testing Possible? - The Consequence of Bugs -Taxonomy of Bugs.

UNIT-II

PRINCIPLES OF TESTING: Software Development Life Cycle Models-Phases of Software Project - Quality – Assurance – Control – Testing - Verification - Life Cycle Model - Waterfall Model - Rapid Application Development Models - Spiral Model-V Model.

UNIT-III

TYPES OF TESTING: White Box Testing-Static Testing-Structural Testing-Black Box Testing-Integration Testing- Phase of Testing- Scenario Testing-Defect Bash-System and Acceptance Testing -Functional System Testing-Non-Functional Testing-Regression Testing-Internalization Testing-Ad hoc testing.

UNIT-IV

TEST OF OBJECT-ORIENTED SYSTEMS: Usability and Accessibility Testing-Approach - Quality Factors-Tools for Usability-Test roles for usability-Common People Issues-Comparison between Testing and Development Functions-Role of Echo system.

UNIT-V

[11 Hrs] **ORGANIZATIONS STRUCTURES FOR TESTING TEAMS:** Dimension-Structure-Single Product Company - Multi product companies - Effects of Globalization - Testing service Organization-Test Management and Automation -Test planning -Test Process-Test Reporting - Best Practices.

Text Books:

- 1. "Software Testing Principles and Practice's, Srinivasan Desikan, Gopalswamy Ramesh Pearson Education Publication, 2006
- 2. "The Craft of Software testing including Object Based and Object-Oriented Testing", Brain Marik- Prentice-Hall, 1995.

Reference Book:

1. "Lessons Learned in software testing", CemKaner, James Bach-Wiley (1st edition) 2008

[12 Hrs]

[12 Hrs]

[13 Hrs]

[12 Hrs]

II-MSC (CS)	DVTHON DDOCDAMMINC	21PCS807
SEMESTER – II	PYTHON PROGRAMMING For the students admitted from the year 2021	HRS/WK – 4
CORE –6	For the students admitted from the year 2021	CREDIT – 4

The course introduces students to learn fundamentals of Python Programming and have an understanding of Python and its various Programming constructs.

Course Outcomes (CO):

- CO1: To Learn the introduction and Features of Python
- CO2. Learn the Basic Syntax of Python
- CO3. Learn about the Strings, Lists, Tuples and Dictionary in Python
- CO4. Acquired an idea about Control Structures in Python
- **CO5.** Understood the Defining a Function Calling a Function

Relationship Matrix Course Outcome, Programme Outcome and Programme Specific outcome

SEMESTER II			JRSE C 21PCS8				-	OURSE T ON PROGI	ITLE: RAMMINO	3	HOURS: 4	CREDITS: 4	
COURSE OUTCOME	PRO	GRAM	ME OU	TCOM	E(PO)	PROGRAMME SPECIFIC OUTCOME(PSO)					MEAN SCOR	E OF CO	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5			
CO1	4	4	5	5	4	4	4	4	3	3	4.0		
CO2	4	4	3	4	4	4	4	3	3	4	3.7		
CO3	4	4	3	3	4	4	4	3	4	4	3.9		
CO4	4	4	3	3	4	4	4	3	4	4	3.7		
CO5	4	3	4	4	3	4	4	3	4	4	3.7		
	Mean Overall Score												

Result: The Score of this Course is 3.8(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

UNIT-I

Introduction To Python: Features of Python – Applications of Python – Installing and Running Python

UNIT-II

[Hrs 11]

[Hrs 12]

Basic Syntax Of Python: Python Identifiers - Comments in Python -Variables - Standard Data types in Python

UNIT-III

[Hrs 13]

[Hrs 12]

Strings, Lists, Tuples And Dictionary In Python: -Simple Programs in Python - Operators and its types in Python – Operator Precedence

UNIT-IV

[Hrs 12] Control Structures In Python: Decision Making Statements Looping Constructs - Unconditional Control Statements.

UNIT-V

Function In Python: Defining a Function – Calling a Function – Call by Value and Reference – Function Arguments – Anonymous Functions – Return Statement – Scope of Variables.

Text Books:

- 1. "Introduction to Computing and Problem Solving with PYTHON", Jeeva Jose and P. Sojan Lal, Khanna Book Publishing Co. (P) Ltd., 2016.
- 2. "Core Python Programming", Wesley J. Chun, Second Edition, Prentice Hall Publication, 2006.

Reference Book:

1. "Python Programming for Absolute Beginners", Micheal Dawson, Third Edition, Course Technology, 2010.

Computer Science

II-MSC (CS)	WIRELESS COMMUNICATION	19PCS808
SEMESTER – II	TECHNOLOGIES	HRS/WK – 4
CORE-7		CREDIT – 3

Objectives:

- 1. To know about the various frequency Spectrum and Signals for wireless communication
- 2. To Know the concept of Infrared, Cordless and WLL
- 3. To understand the concepts wireless communication technologies such as Wireless LAN, WiMAX, Bluetooth and Wi-Fi

Course Outcomes (CO):

After learning this course, the students should be able to expose

CO1: Ability to know the Purpose of Protocols and the TCP/IP SuiteCO2: Ability to understand the Principles of Signal Encoding TechniquesCO3: Ability to acquire knowledge about the wireless networkingCO4: Ability to understand the cordless systems and wireless local loopCO5: Ability to learn the IEEE 802.11 Wireless LAN Standard

Relationship Matrix Course Outcome, Programme Outcome and Programme Specific Outcome

SEMESTER II		COU	RSE CO 19PCS8			v	VIRELES	DURSE TI S COMMU CHNOLO	N	HOURS: 4 3			
COURSE	PR	OGRAM	IME OU	TCOME	(PO)	PROGRAMME SPECIFIC OUTCOME(PSO)				MEAN SCORE	E OF CO		
	PO	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5			
	1										3.6		
CO1	3	3	3	4	4	4	4	3	4	4			
CO2	3	4	3	4	4	4	4	3	3	4	3.6		
CO3	4	3	4	4	3	3	4	3	3	4	3.5		
CO4	3	4	3	4	3	4	4	3	4	4	3.6		
CO5	3	4	3	4	3	3	3	4	3	4	3.4		
	Mean Overall Score												

Result: The Score of this Course is 3.5(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

Computer Science

[12 Hrs]

Introduction To Protocols And The Tcp/Ip Suite-: The Need for a Protocol Architecture, The TCP/IP Protocol Architecture, The OSI Model, Inter-networking. Wireless Communication Technology- Antennas and Propagation- Antennas, Propagation Modes, Line - of-Sight Transmission, Fading in the Mobile Environment.

UNIT -II Signal Encoding Techniques: Signal Encoding Criteria, Digital Data- Analog Signals, Analog Data-Analog Signals, Analog Data-Digital Signals, The Concept of Spread Spectrum-Frequency Hopping Spread Spectrum, Direct Sequence Spread Spectrum, Code Division Multiple Access, Generation of Spreading Sequences.

UNIT -III

UNIT-I

[13Hrs] Wireless Networking: Satellite Communications- Satellite Parameters and Configurations, Capacity Allocation-Frequency Division, Capacity Allocation-Time Division Cellular Wireless Networks- Principles of Cellular Networks, First-Generation Analog, Second-Generation - TDMA, CDMA, Third-Generation Systems.

UNIT -IV

Cordless Systems And Wireless Local Loop: Cordless Systems, Wireless Local Loop -Wireless LANs- Wireless LAN Technology – Overview, Infrared LANs, Spread Spectrum LANs, Narrowband Microwave LANs.

UNIT-V

[10 Hrs]

IEEE 802.11 Wireless LAN Standard: IEEE 802 Protocol Architecture, IEEE 802.11 Architecture and Services, IEEE 802.11 Medium Access Control. Introduction to Wi-Fi and Bluetooth Technologies (Only Overview).

Text Book:

1. "Wireless Communications and Networks, William Stallings", Pearson Prentice Hall (2nd edition), 2005. (Chapters 4, 5, 6, 7, 9, 10,11, 13, 14, 15.1)

Reference Books:

- 1. "Wireless Communication Technology", Steve Rackley-Elsevier, 2007
- 2. "Adhoc Wireless Networks- Architechture and Protocols", C. Siva Ram Murthy and B.S.Manoj-Pearson Prentice Hall, 2004

[13Hrs]

[12 Hrs]

I M.Sc(CS)		19PCS809
SEMESTER – II	WEB TECHNOLOGY	HRS/WK – 4
CORE – 8		CREDIT – 3

- To enable the students to learn the principles of Internet programming.
- To Gain knowledge in Internet basics and XML
- ✤ To Understand Java Script and PHP programming.

Course Outcomes (CO):

CO1: Understand the basics of internet communications and hardware elements associated with it. **CO2**: Learn the fundaments of HTML tags, frames, frameset and tables.

CO3: Acquire knowledge about java script and its controls statements, functions, objects.

CO4: Understand about XML, CSS, XSL, DTD, XSD.

CO5: Create dynamic web applications with PHP scripting.

Relationship Matrix Course Outcome, Programme Outcomes and Programme Specific Outcome

SEMESTER II	COD	COU E:19PC	JRSE S809					URSE TI TECHN			HOURS: 4	CREDITS: 3
COURSE OUTCOME	GRAMI	ME OU	TCOMI	E(PO)	PROGRAMME SPECIFIC OUTCOME(PSO)					MEAN SCOR	E OF CO	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5		
CO1	3	3	3	4	3	4	3	3	4	4	3.4	
CO2	4	4	4	4	4	3	3	3	3	4	3.6	
CO3	4	4	3	3	4	3	4	3	4	4	3.6	
CO4	4	4	3	3	4	4	3	3	4	3	3.5	
CO5	4	3	4	3	3	4	3	3	4	4	3.5	
		•		Mean	Overal	l Score	•	•	•			3.5

Result: The Score of this Course is 3.5(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

UNIT – I [12 Hrs] Basics Of Internet Communication: Hardware elements associated with internet - Internet Services - Internet Protocols - TCP/IP, UDP, HTTP - Other Protocols - Telnet - Gopher- Mail and its types- FTP - Remote access - Web Indices - Search Engines.

UNIT – II

[12 Hrs]

Introduction To HTML: Tags and Documents - Link documents using Anchor Tags – Images and Pictures – Tables – HTML Forms - Frames – Framesets.

UNIT – III

[12 Hrs] Introduction To Scripting: Java Script – Data types – Operators – Variables – Conditional Statements – Functions – Objects – Document object – Window Object – Event Handling.

UNIT – IV

[11 Hrs] Introduction To XML: Well-formed XML – CSS – XSL - Valid XML – DTD – XSD - Introduction to DOM and SAX Parsers.

UNIT - V

[13 Hrs] Introduction To Dynamic Web Applications: Server-Side Scripting basics - Server-Side Scripting Languages – PHP Scripting - General Syntactic Characteristics – Primitives, operations and expressions - Control Statement - Arrays - Functions - Pattern Matching -Form Handling – Files – Cookies – Session Tracking – Database access with PHP and MYSQL.

Text Books:

- 1. "Internet and WWW How to program?", Deitel & Deitel Pearson Education, 2005 (Units I, II and III)
- "Programming the WWW", Robert W Sebesta Pearson Education.2006 (Unit V) 2.
- 3. "Beginning XML", David Hunter Et al Wrox Publications 2000. (Unit IV)

Reference Books:

- "Internet Systems Handbook", Daniel C. Lynch, Marshall T. Rose Addison Wesley 1993.
- "10 Minute Guide to the Internet", Peter Kent Prentice Hall of India, 1996.
- "Teach Yourself XML in 21 days", Scott Mitchell and James Atkinson - Sams Publishing, 1999.
- "Internetworking with TCP/IP", Douglas E.Comer, David L.Stevens (Second Edition)-2007.

I M.Sc(CS)	DISTRIBUTED COMPUTING	EPCS810
SEMESTER – II		HRS/WK – 4
ELECTIVE – 2A		CREDIT – 3

- ◆ To enable the student to be familiar with distributed systems and client server computing.
- To provide a clear description of the fundamental concepts and design principles that is applicable to a variety of distributed operating systems.

Course Outcomes (CO):

CO1: To understand the basic concepts of distributed systems

CO2: Outline the Client /server communication in distributed systems.

CO3: Demonstrate concurrency control and properties of transaction in Distributed Systems.

CO4: Ability to know about file accessing model and various services in Distributed System.

CO5: Understand the Resource Process Management and Distributed Shared Memory in distributed system

Relationship Matrix Course Outcomes, Programme Outcome and Programme Specific Outcome

SEMESTER II		COURSE CODE: EPCS810						URSE TI TED CO	TLE: MPUTINO	3	HOURS: 4	CREDITS: 3		
COURSE OUTCOME	PROGRAMME OUTCOME(PO)					PROGRAMME SPECIFIC OUTCOME(PSO)					MEAN SCO CO	RE OF		
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5				
CO1	3	3	2	3	4	3	3	3	2	4	3.0			
CO2	3	3	2	3	4	3	4	3	4	4	3.3			
CO3	3	3	2	4	3	3	3	4	3	3	3.1			
CO4	3	3	3	2	3	4	3	4	3	3	3.1			
CO5	3	3	3	3	4	3	3	4	3	3	3.2			
	Mean Overall Score										3.1			

Result: The Score of this Course is 3.1(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

UNIT - I

Introduction To Distributed Systems: Introduction – Goals - Hardware concept – Software Concepts – Design Issues: Transparency – Flexibility – Reliability – Performance – Scalability.

UNIT - II

Communication In Distributed Systems: The client –server model –Addressing - Types of Primitives – Implementation – Group communication – Introduction –Design Issues – Group communication in ISIS.

UNIT - III

Synchronization In Distributed Systems: Clock Synchronization – Mutual Exclusion -Election Algorithms –Atomic Transactions- Deadlocks.

UNIT - IV [12 Hrs] Processes And Processors: Processes and Processors in Distributed Systems – Threads – Processor Allocation – scheduling – Fault Tolerance. Distributed File system – Design – Implementation – Trends in Distributed File systems.

UNIT - V

[12 Hrs]

Distributed Shared Memory: Introduction – shared memory – consistency models – page – based distributed shared memory.

Text Books:

- 1. "Modern Operating Systems" Andrew S. Tanenbaum, Prentice Hall of India Pvt. Limited, New Delhi,1997
- 2. "An Introduction to Distributed and Parallel Processing" John A. Sharp, Blackwell Scientific Publications, 1987.

Reference Books:

- 1. "Distributed Databases Principles and systems" Stefans Ceri, Ginseppe Pelagatti, McGraw Hill Book Co., New York, 1985.
- 2. "Distributed systems: concepts & Design" George Coulouries, Pearson education Pvt. Ltd (Fourth edition- 2009), (Second Edition 2000).

[10 Hrs]

[12 Hrs]

[14 Hrs]

I M.Sc(CS)		EPCS810A
SEMESTER – II	FUZZY LOGIC	HRS/WK – 4
ELECTIVE – 2B		CREDIT – 3

This course presents a detailed knowledge of Fuzzy logic principles, sets, relations, systems and its applications.

Course Outcomes (CO):

After learning this course, the students should be able to expose

CO1: Ability to mathematically quantify knowledge, expertise and intuition, to model complex systems. **CO2:** Ability to understand the basic knowledge of fuzzy relation and fuzzy set

CO3: Ability to acquire knowledge about the fuzzy logic and Fuzzy Expert Systems

CO4: Ability to apply basic fuzzy inference and approximate reasoning

CO5: Ability to apply in day-to-day life.

Relationship Matrix Course Outcome, Programme Outcome and Programme Specific Outcome

SEMESTER II								HOURS: 4	CREDITS: 3						
COURSE OUTCOME									E(PSO)		MEAN SCORE OF CO				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1	4	4	4	5	4	5	4	3	4	5		4.2			
CO2	4	4	4	4	5	4	4	4	3	4		4.0			
CO3	4	4	4	4	4	4	4	4	4	4		4.0			
CO4	4	4	4	4	4	4	4	4	5	4		4.1			
CO5	4	4	5	4	4	4	4	4	4	3	4.0				
	Mean Overall Score											4.0			

Result: The Score of this Course is 4.0(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

UNIT - I

Introduction: Crisp sets: an overview - Basic types of fuzzy sets - Basic Concepts of fuzzy sets-Characteristics and Significance - Fuzzy sets Vs Crisp sets - Additional properties of Alpha Cuts - Representation of Fuzzy sets - Extension principle for Fuzzy sets - Operations on Fuzzy Sets - types of operations- Fuzzy compliments, Union, Intersection - Combination of Operations - Aggregation Operations- Fuzzy Arithmetic - Fuzzy numbers - Linguistic variables - Arithmetic Operation on Intervals And Fuzzy numbers - Lattice of Fuzzy numbers - Fuzzy Equation.

UNIT – II

Fuzzy Relation: Fuzzy Relation - Crisp & Fuzzy Relations - Projections & Cylindric Extensions - Binary Fuzzy Relations - Binary Relations on a Single Set - Fuzzy Equivalence Relations - Fuzzy Compatibility Relations - Fuzzy Ordering Relations - Fuzzy Morphisms - Compositions of Fuzzy Relation - Fuzzy Relation Equations - General Discussion - Problem Partitioning - Solution Method - Fuzzy Relation Equation Based on Sup_i&Inf_i Completions - Approximate Solutions - The use of Neural Networks - Possibility Theory - Fuzzy Measures - Evidence Theory - Possibility Theory - Fuzzy Sets & Possibility Theory - Possibility Theory Vs Probability Theory.

$\mathbf{UNIT} - \mathbf{III}$

Fuzzy Logic: Fuzzy Logic - Classical logic - Multi valued Logic - Fuzzy Propositions & Quantifiers - Linguistic Hedges - Inference from Conditional Fuzzy Propositions - Inference from Conditional & Qualified Propositions - Inference from Quantified Propositions - Uncertainty Based Information - Information & Uncertainty - Non specificity of Crisp Sets & Fuzzy sets - Fuzziness of Fuzzy sets - Uncertainty in Evidence Theory - Uncertainty Measures - Principles of Uncertainty - Approximate Reasoning - Fuzzy Expert Systems - Fuzzy Implication & Its selections - Multi conditional Approximate Reasoning - The Role of Fuzzy Relation Equations - Interval Valued Approximate Reasoning.

UNIT – IV

Fuzzy Systems: Fuzzy Systems - General Discussion - Overview of Fuzzy Controllers and Example - Fuzzy systems & Neural Networks - Fuzzy Neural Networks - Fuzzy Automata-Fuzzy Dynamic Systems - Pattern Recognition - Introduction - Fuzzy clustering - Fuzzy Pattern Recognition - fuzzy Image Processing-Fuzzy Databases & Information Retrieval Systems - General Discussion - Fuzzy Databases -Fuzzy Information Retrieval.

UNIT – V

Applications: Engineering & Other applications - Introduction - Civil Engineering - Mechanical Engineering - Industrial Engineering - Computer Science Engineering - Reliability Theory - Robotics - Medicine - Economics - Decision Making - Fuzzy Systems & Genetic Algorithms - Fuzzy Regression - Interpersonal Communication.

[12 Hrs]

[**12 Hrs**] & Cvlind

[13 Hrs]

[12 Hrs]

[11 Hrs]

Text book:

1. "Fuzzy Sets and Fuzzy Logic Theory and Applications", George J. Klir & Bo Yuan-Prentice Hall, India.1995

Reference book:

- 1. "Fuzzy Sets Uncertainty & Information", George J. Klir & Tina A. Folger-PHI, 2001.
- 2. "Neuro Fuzzy and Soft Computing ",J.S.R.Jang, C.T.Sun, E.Mizutani- PHI, 2003.

I M.Sc(CS)		EPCS810B
SEMESTER – II	GRID COMPUTING	HRS/WK – 4
ELECTIVE – II C		CREDIT – 3

To impart knowledge related to the various concepts, methods of Grid computing with grid benefits, components, and standards support grid computing techniques.

Course Outcomes (CO):

CO1: Understand the basic concept of Grid Computing.

CO2: Gain knowledge on the concepts of Grid Benefits & Status of Technology.

CO3: Understand the concept of Components of Grid Computing Systems

CO4: Ability to know Grid computing Architecture & its Drawbacks.

Mean Overall Score

CO5: Understand the Concept of Grid Computing Standards and Service Elements and Components of OGSA Services

SEMESTER II			JRSE C EPCS81			COURSE TITLE: GRID COMPUTING					HOURS:4	CREDITS:3
COURSE OUTCOME	PRO	GRAM	ME OU	тсом	E(PO)	PROGRAMME SPECIFIC MEAN SCORE (OUTCOME(PSO) CO						
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5		
CO1	3	3	4	2	4	3	4	3	3	4	2	3.1
CO2	3	4	4	3	4	3	3	3	3	4		3.4
CO3	3	3	4	3	4	3	3	3	2	4		3.2
CO4	3	2	3	3	3	3	3	2	4	4		3.0
CO5	3	3	3	4	3	3	3	2	3	3	3.0	
		•	•									3.1

Result: The Score of this Course is 3.1(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

UNIT-I

Introduction: Grid Computing & Key Issues-Applications-Other Approaches-Grid Computing Standards-Grid Topology-Component s& Layers-Pragmatic Course of Investigation.

UNIT-II

Goal Benefits & Status Of Technology: Motivations-History of Computing, Communications and Grid Computing –Grid Computing Prime Time-Suppliers and Vendors- Economic Value-Challenges

UNIT-III

[12 Hrs]

Components Of Grid Computing Systems & Architecture: Basic Constituent Elements-A Functional view-A Physical View-Service View.

UNIT-IV [12 Hrs] Grid Standardization-Architectural Constructs Computing **Standards-OGSI:** - Practical view-OGSA/OGSI Service Elements and Layered Model-More Detailed View.

UNIT-V [12 Hrs] Standards Supporting Grid Computing-OGSA: Functionality Requirements OGSA Service Taxonomy-Service Relationships-OGSA Services-Security Considerations.

Text Book:

1. "A Networking Approach to Grid Computing", Daniel Minoli-Wiley publications-2004

Reference Book:

1. "Grid Computing-A practical Guide to Technology & Applications", Ahmar Abbas-Charles River Media Publications-2004

[12 Hrs]

[12 Hrs]

II-MSC (CS)		21PCSP23
SEMESTER – II	PYTHON PROGRAMMING	HRS/WK – 5
CORE PRACTICAL-III	For the students admitted from the year 2021	CREDIT – 3

The course introduces students to learn fundamentals of Python Programming and have an understanding of Python and its various Programming constructs.

Course Outcomes (CO):

- **CO1:** To Learn the Simple programs of Python
- CO2. Learn the Basic Syntax of Python
- CO3. Learn about the Strings, Lists, Tuples and Dictionary in Python
- CO4. Acquired an idea about Control Structures in Python
- **CO5.** Understood the Defining a Function Calling a Function

Relationship Matrix Course Outcome, Programme Outcome and Programme Specific outcome

SEMESTER II	COURSE CODE: 21PCSP23					COURSE TITLE: PYTHON PROGRAMMING				3	HOURS: 5	CREDITS: 3	
COURSE OUTCOME	PROGRAMME OUTCOME(PO)					PROGRAMME SPECIFIC OUTCOME(PSO)					MEAN SCORE OF CO		
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5			
CO1	4	4	5	5	4	4	4	4	3	3	4.0		
CO2	4	4	3	4	4	4	4	3	3	4	3.7		
CO3	4	4	3	3	4	4	4	3	4	4	3.9		
CO4	4	4	3	3	4	4	4	3	4	4	3.7		
CO5	4	3	4	4	3	4	4	3	4	4	3.7		
Mean Overall Score										3.8			

Result: The Score of this Course is 3.8(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

PYTHON PROGRAMMING

- 1. Write a Simple program in python.
- 2. Write a python program to Check Armstrong Number.
- 3. Write a python program to implement conditional branching.
- 4. Write a python program to implement loop structure.
- 5. Write a Python program to remove the nth index character from a nonempty string.
- 6. Write a Python program to find the second smallest number in a list.
- 7. Write a python program using tuples.
- 8. Write a Python program to find the highest 3 values of corresponding keys in a dictionary.
- 9. Write a Python program to find the factorial of a number using recursive function.
- 10. Write a program for Simple Calculator

WEB REFERENCE:

//www.programiz.com/python-programming

I M.Sc(CS) SEMESTER – II CORE PRACTICAL – IV

WEB TECHNOLOGY LAB

19PCSP24 HRS/WK – 5 CREDIT –3

Objective:

To develop applications using HTML, XML and PHP.

Course Outcomes (CO):

- **CO1**: Create a HTML table with rows and columns and split them using Row span and Col span.
- CO2: Understand and create web pages using text links and align them.
- **CO3:** Acquire knowledge to create XML documents, write a XSL style sheet and validate them using DTD or XSD.
- CO4: Understand and write PHP programs for storage and retrieval of data from MYSQL.
- **CO5:** Create java script programs and illustrate its various concepts.

Relationship Matrix Course Outcome, Programme Outcome and Programme Specific Outcome

SEMESTER II	COURSE CODE:19PCSP24					COURSE TITLE: WEB TECHNOLOGY LAB					HOURS: 5	CREDITS: 3	
COURSE OUTCOME	PRO)GRAM	ME OU	TCOME((PO)	PROGE	PROGRAMME SPECIFIC OUTCOME(PSO)				MEAN SCORE OF CO		
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5			
CO1	3	4	3	4	3	4	4	4	4	3	3.6		
CO2	4	4	3	4	3	4	3	4	3	3	3.5		
CO3	4	3	3	4	4	4	4	3	3	4	3.6		
CO4	4	3	4	3	3	3	4	3	4	4	3.5		
CO5	3	4	4	3	4	4	3	3	4	4	3.6		
	Mean Overall Score									3.6			

Result: The Score of this Course is 3.6(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

WEB TECHNOLOGY LAB

- 1. Create a HTML table with rows and columns and split them using Row span and Col span.
- 2. Create a web page in the format of front page of a news paper using Text links. Align the text with colors.
- 3. Write a HTML program for new email account registration. Validate the input using Java Script.
- 4. Write an XML document to display your bio-data. Write an XSL style sheet and attach that to the XML document. Validate the document using DTD or XSD.
- 5. Write a server-side PHP program that displays marks, total, grade of a student in tabular format by accepting user inputs for name, number and marks from a HTML form.
- 6. Write a PHP program to access the data stored in a mysql table.
- 7. Develop a simple Web page using Html and JavaScript about your college.
- 8. Write a JavaScript Program to prepare a salary slip for an Employee
- 9. Write a JavaScript Program to illustrate the use of String Functions

10. Write a JavaScript Program to illustrate the use of Mathematical Functions and Date Functions. **WEB REFERENCES:**

- 1. <u>https://www.w3schools.com/html/html_examples</u>
- 2. <u>https://beginnersbook.com/2018/10/xml-example</u>
- 3. https://www.codewithc.com/category/projects/php-projects

II M.Sc (CS)
SEMESTER – III
CORE – 9

DATA MINING AND WAREHOUSING For the students admitted from the year 2008

PCS911	
HRS/WK – 4	
CREDIT – 3	

Objective:

This course enables us to understand the concepts of Data Warehousing and Data Mining and its applications.

Course Outcomes (CO):

After learning this course, the students should be able to expose CO1: Ability to know the data mining introduction and classification of data mining system CO2: Ability to understand the principles of knowledge discovery process CO3: Ability to acquire knowledge about Data Warehouse Architecture CO4: Ability to apply classification and prediction CO5: Ability to learn the Data warehouse scoping and planning

Relationship Matrix Course Outcome, Programme Outcome and Programme Specific Outcome

SEMESTER III		COURS	SE CODE:	PCS911		COL	JRSE TIT WA	AND	HOURS: 4	CREDITS: 3					
COURSE OUTCOME							PROGRAMME OUTCOME(PO) PROGRAMME SPECIFIC OUTCOME(PSO)								
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1	4	4	2	4	3	4	4	3	2	4	3.4				
CO2	4	4	2	4	4	5	4	3	2	4		3.6			
CO3	4	3	3	4	3	4	4	3	3	4		3.4			
CO4	4	4	2	4	4	3	4	3	3	4		3.5			
CO5	4	4	2	4	4	4	4	3	2	4		3.5			
	Mean Overall Score											3.6			

Result: The Score of this Course is 3.6(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

[10 Hrs]

UNIT-I

DATA MINING INTRODUCTION: Data mining -Introduction-classification of data mining system-Data mining Vs Data Base-Application of data mining-Data mining functionalities- Integration of data mining system with the data warehouse system.

UNIT-II KNOWLEDGE DISCOVERY PROCESS: Knowledge Discovery Process-Data cleaning: missing values-noisy data-data cleaning as a process-Data Integration and Transformation-Data Reduction-Types of OLAP servers: ROLAP Vs MOLAP Vs HOLAP- Decision trees- Neural network- Genetics algorithms.

UNIT-III

[13 Hrs] DATA WAREHOUSE ARCHITECTURE: Steps for the design and construction of data warehouses-A three tier data warehouse architecture -data warehouse back-End Tools and utilities-metadata repository-From data warehousing to data mining-From online analytical processing to online analytical mining-Data warehouse implementation-Efficient computation of data cubes.

UNIT-IV

CLASSIFICATION AND PREDICTION: Bayesian classification- Baye's theorem-Rule based classification: Using IF-THEN rules for classification-Rule Extraction from a decision tree-Prediction-Cluster Analysis-Types of data in cluster analysis.

UNIT-V [12 Hrs]

PLANNING: Data warehouse scoping and planning -Testing and implementation of data warehouse – Advantages of Data warehousing –Disadvantages of data warehousing.

Text Book:

1. "Data Mining Concepts And Techniques", Jiawei Han and Micheline Kamber -Morgan Publishers (second edition),2006

Reference Book:

- 1. "Data Mining ", Pieter Adrians , DolfZantiage , Addison Wesley, 1996
- 2. "Data Warehousing in the real world", Sam Anahory, Dennis Murrey, AddisonWesley, 1996.
- 3. "Data Warehousing-Concepts, Techniques, Products & Applications", C.S.R Prabhu, PHI Second Edition. 2002.

[12 Hrs]

[13 Hrs]

II-MSC (CS)	DASICS OF MACHINE LEADNING	21PCS912
SEMESTER – III	BASICS OF MACHINE LEARNING	HRS/WK – 4
CORE –10	For the students admitted from the year 2021	CREDIT – 4

- * This course introduces students to understand fundamentals of Machine Learning.
- ✤ At the end of the course, students should have an understanding of Machine Learning and its various importance in Research.
- Students will also be aware of the utilization of Machine Learning in building dynamics of Knowledge.

Course Outcomes (CO):

CO1: Essential knowledge on Machine Learning.

- CO2. Learn the Basics of Machine Learning and its concepts.
- CO3. Acquire the fundamental knowledge on building Machine Learning programs.
- **CO4**. Develop an idea about Machine Learning Algorithms
- CO5. Understand and develop Research Application using Machine Learning.

Relationship Matrix Course Outcome, Programme Outcome and Programme Specific outcome

SEMESTER III			RSE CO 21PCS9			I	-	OURSE T	NG	HOURS: CREDITS: 4 4			
COURSE OUTCOME	PRC	GRAM	ME OU	TCOME	E(PO)	PROG	GRAMME SPECIFIC OUTCOME(PSO) MEAN SCOR				E OF CO		
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5			
CO1	4	4	5	5	4	4	4	4	3	3	4.0		
CO2	4	4	3	4	4	4	4	3	3	4	3.7		
CO3	4	4	3	3	4	4	4	3	4	4	3.9		
CO4	4	4	3	3	4	4	4	3	4	4	3.7		
CO5	4	3	4	4	3	4	4	3	4	4	3.7		
	Mean Overall Scor										3.8		

Result: The Score of this Course is 3.8(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

UNIT -I

INTRODUCTION: Introduction to Machine Learning – Importance of Machine Learning in Research - Applications of Machine Learning - Categories of Machine Learning Techniques – Trends in Machine Learning.

UNIT-II [12Hrs] SUPERVISED LEARNING: Introduction to Supervised Techniques - Algorithms for Supervised Learning - k-Nearest Neighbors - Decision Trees - Naive Bayes- Logistic Regression- Support Vector Machines.

UNIT-III

UNSUPERVISED LEARNING: Introduction to Unsupervised Techniques - Algorithms for Unsupervised Learning- K-Means Clustering Algorithms –Hierarchical Clustering Algorithms - Difference between Supervised and Unsupervised Algorithms.

UNIT-IV [11Hrs] **ARTIFICIAL NEURAL NETWORKS:** Multilayer Perceptron - The Perceptron - Training a Perceptron - Learning Boolean Functions - MLP as a Universal Approximator – Back propagation Algorithm - Nonlinear Regression - Two-Class Discrimination - Multiclass Discrimination - Multiple Hidden Layers.

UNIT-V

DESIGN AND ANALYSIS OF MACHINE LEARNING EXPERIMENTS: Guidelines for Machine Learning Experiments - Cross-Validation and Resampling Methods - Measuring Classifier Performance - Interval Estimation - Hypothesis Testing - Assessing a Classification Algorithm's Performance - Comparing Multiple Algorithms: Analysis of Variance.

TEXT BOOK:

1. "Introduction to Machine Learning", Ethem Alpaydın, Second Edition, The MIT Press, 2010.

REFERENCE BOOKS:

- 1. "Machine Learning for Absolute Beginners", Oliver Theobald, Second Edition, Oliver Theobald Publications, 2017.
- 2. Andreas C. Müller & Sarah Guido, "Introduction to Machine Learning with Python", O'Reilly Publications, 2017.

[12Hrs]

[13Hrs]

[12Hrs]

II M.SC (CS)		PCS913P
SEMESTER – III	CLOUD COMPUTING	HRS/WK – 4
CORE – II		CREDIT – 3

Objective:

To impart the basic concepts of Cloud Computing and its applications.

Course Outcomes (CO):

CO1: To understand the basic concepts of Cloud Computing

CO2: Understand the concept of Infrastructure as a service in cloud

CO3: Ability to Design & develop backup strategies for cloud data based on features.

CO4: Gain idea about the Cloud with Map Reducing concept.

CO5: Ability to understand the concept of security and key components of AWS

SEMESTER III		COL	URSE C	CODE:PC	S913P			OURSE TI UD COMP		HOURS: 4	CREDITS: 3		
COURSE OUTCOME	PROGRAMME OUTCOME(PO)					PROGRAMME SPECIFIC OUTCOME(PSO)				MEAN SCO CO	RE OF		
	PO	PO	PO	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5			
	1	2	3								3.0		
CO1	3	3	3	2	4	3	3	2	3	4			
CO2	3	4	3	4	4	3	3	2	3	4	3.3		
CO3	3	3	4	3	3	3	3	2	4	3	3.1		
CO4	4	3	4	3	3	3	3	3	2	3	3.1		
CO5	3	3	4	3	4	3	4	3	3	4	3.4		
	Mean Overall Score										3.2		

Relationship Matrix Course Outcome, Programme Outcome and Programme Specific Outcome

Result: The Score of this Course is 3.2(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

UNIT-I

Introduction To Cloud Computing: Roots of Cloud Computing -Layers and Types of Cloud - Features of a Cloud - Infrastructure Management- Cloud Services - Challenges and Risks - Migrating into a Cloud: Introduction - Broad Approaches - Seven Step Model - Integration as a Service - Integration Methodologies - SaaS.

UNIT-II

Infrastructure As A Service: Virtual Machines - Layered Architecture - Life Cycle – VM Provisioning Process - Provisioning and Migration Services - Management of Virtual Machines Infrastructure - Scheduling Techniques - Cluster as a Service - RVWS Design - Logical Design - Cloud Storage – Data Security in Cloud Storage - Technologies.

UNIT-III

[12Hrs] Platform And Software As A Service: Integration of Public and Private Cloud - Techniques and Tools - Framework Architecture -Resource Provisioning Services - Hybrid Cloud - Cloud Based Solutions for Business Applications - Dynamic ICT Services - Importance of Quality and Security in Clouds - Dynamic Data Center - Case Studies - Workflow Engine in the Cloud - Architecture - Utilization - Scientific Applications for Cloud - Issues - Classification - SAGA - Map Reduce Implementation.

UNIT-IV

MONITORING AND MANAGEMENT: An Architecture for Federated Cloud Computing - Use Case - Principles - Model - Security Considerations - SLA Management - Traditional Approaches to SLO - Types of SLA - Life Cycle of SLA - Automated Policy - Performance Prediction of HPC - Grid and Cloud - HPC Performance Related Issues.

UNIT-V

APPLICATIONS: Best Practices in Architecting Cloud Applications in the AWS Cloud - Massively Multilayer Online Game Hosting on Cloud Resources - Building Content Delivery Networks using Clouds – Resource cloud Mashups

Text Book:

1. "Cloud Computing Principles and Paradigms", Rajkumar Buyya, James Broberg and Andrzej Goscinski, Wiley Publications, 2011

Reference Books:

- 1. "Cloud Application Architectures" George Reese, Shroff O'reilly, ISBN: 8184047142, 2009.
- 2. "Cloud Computing Web Based Applications that change the way you work and collaborate online", Michael Miller - Pearson Education, 2009.

[12Hrs]

[12Hrs]

[12Hrs]

[12Hrs]

II M.SC (CS)	PRINCIPLES OF COMPILER DESIGN For the students admitted in the year 2015	EPCS914T
SEMESTER – III		HRS/WK – 4
ELECTIVE – 3A		CREDIT – 3

To understand the Various phases of a compiler and to develop skills in designing a compiler.

Course Outcomes (CO):

CO1: Apply skills and familiarity which are applicable to a broad range of computer applications. **CO2:** Design and develop a comprehensive Compiler for a given language

- **CO3:** Implement various parsing, conversion, optimization and code generation algorithms for the design of a compiler.
- **CO4:** Understand the concept parsing techniques
- CO5: Able to understand the memory allocation with Loop Optimization and DAG

Relationship Matrix Course Outcomes, Programme Outcomes and Programme Specific Outcomes

SEMESTER III		COUR	SE CODE	: EPCS914	4T	CC	OURSE TI COM	OF	HOURS: 4	CREDITS: 3		
COURSE OUTCOMES	Р	ROGRAN	AME OUT	COMES(PO)		PROGR OUI		SCORE OF			
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5		
CO1	4	4	4	4	4	4	4	4	3	3		3.8
CO2	3	4	3	4	4	4	4	4	3	4		3.7
CO3	3	4	3	4	3	4	4	4	3	4		3.6
CO4	4	3	3	4	3	4	4	4	3	4		3.6
CO5	4	4	4	4	4	4	4	4	4	3		3.7
	Mean Overall Score											3.6

Result: The Score of this Course is 3.6(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

UNIT-I

COMPILER- Phases of Compiler - Lexical Analysis - Role of Lexical analyzer - Finite Automata – Regular Expression – From a Regular expression to an NFA, NFA to DFA – Design of Lexical Analyzer.

UNIT- II

SYNTAX ANALYZER - CFG - Role of the Parser - CFG - Top Down Parsing - Recursive descent parsing, predictive Parsers – Bottom up Parsing – Shift reduce, operator precedence parsers

UNIT- III

SYNTAX DIRECTED DEFINITION- Construction of Syntax trees - Intermediate code generation – Intermediate Languages – Syntax trees, post fix form, Three address code – Boolean expressions.

UNIT- IV

[12 Hrs] SYMBOL TABLE- contents of Symbol table – Implementation of Stack allocation scheme - Storage allocation.

UNIT - V

[12 Hrs] CODE OPTIMIZATION AND CODE GENERATION- principles sources of optimization - loop optimization - Dag Representation of Basic blocks. CODE GENERATION-simple code generator.

Text Book:

1. Compilers Principles, Techniques and Tools Alfred V.Aho, Ravi Sethi, Jeffrey D. Ullman.

Chapter 1 : (1.1,1.3), Chapter 3: (3.1,3.6,3.7,3.9), Chapter 4: (4.1,4.2,4.4 – 4.6), Chapter 5: (5.1,5.2), Chapter 7: (7.5), Chapter 8: (8.1,8.4)

Reference Book:

1. Principles of Compiler Design Alfred V.Aho and Jeffrey D.Ullman. Chapter 9: (9.1,9.2), Chapter 10: (10.1,10.2,10.3), Chapter 12: (12.1,12.2,12.3), Chapter 15: (15.2,15.4,15.5,15.7)

[11 Hrs]

[13 Hrs]

[12 Hrs]

II M.SC (CS)	MODILE COMPLITING	EPCS914S
SEMESTER – III	MOBILE COMPUTING	HRS/WK – 4
ELECTIVE – 3B		CREDIT – 3

- To provide basics for various techniques in Mobile Communications.
- To build working knowledge on various telephone and satellite networks.
- ✤ To study the working principles of wireless LAN and its standards.
- To build skills in working with Wireless application Protocols to develop mobile content applications.

Course Outcomes (CO):

After learning this course, the students should be able to expose

CO1: Ability to gain knowledge on basis of mobile computing and MAC

CO2: Ability to acquire knowledge on multiple Telecommunication systems

CO3: Ability to access wireless LAN, Bluetooth

CO4: Ability to gain idea on IP, Tunneling and reverse tunneling

CO5: Ability to understand WAP, its Architecture, WML.

Relationship Matrix Course Outcome, Programme Outcome and Programme Specific Outcome

SEMESTER III	COU	RSE CO	DDE:EI	PCS914S				URSE TI LE COMI		HOURS: CREDITS 4 3				
COURSE OUTCOME	PRO	GRAM	ME OU	TCOM	E(PO)			AMME S TCOME(MEAN SCORE OF CO					
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5				
CO1	3	4	3	3	3	4	4	3	4	3	3.4			
CO2	4	4	3	4	3	4	3	4	4	3	3.6			
CO3	4	4	3	3	3	3	4	3	4	4	3.5			
CO4	3	4	3	3	3	3	3	4	4	4	3.4			
CO5	4	4	3	3	3	4	4	3	3	4	3.5			
	Mean Overall Score									3.5				

Result: The Score of this Course is 3.5(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

UNIT- I [12 Hrs] INTRODUCTION: Mobile and Wireless Devices-Simplified Reference Model-Need for Computing- Multiplexing-Spread Spectrum and Cellular Systems-Medium Access Control-Comparisons.

UNIT- II [12 Hrs] TELECOMMUNICATION SYSTEMS: Telecommunication systems – GSM – Architecture-Protocols- Hand Over and Security – Satellite Networks - Satellite Systems.

UNIT- III

.

[13 Hrs]

WIRLESS LAN: IEEE 802.11– System Architecture – Protocol Architecture – Blue Tooth – MAC layer –Security and Link Management.

UNIT-IV

[12 Hrs]

MOBILE IP: Goals– Packet Delivery– Agent Advertisement and Solicitation – Registration - Tunneling and Reverse Tunneling.

UNIT -V [11 Hrs] WIRELESS APPLICATION PROTOCOL: Objectives of WAP– Architecture of WAP – WML Features-WML Script.

TEXT BOOK:

 "Mobile Communications", Jochen Schiller- PHI/Pearson Education (2nd Edition).Delhi, 2000.

REFERENCE BOOKS:

- 1. "The Wireless Application Protocol: Writing Applications for the Mobile internet", Sandeep Singhal, Thomas Bridgman, Lalitha Suryanarayana, Danil Mouney, Jari Alvinen, David Bevis, Jim Chan and Stetan Hild-Pearson Education Delhi,2001.
- 2. "Mobile Computing", Asoke K Talukder, Roopa R Yavagal- TMG,2006.

II M.Sc (C.S)		EPCS914A
SEMESTER –III	DIGITAL IMAGE PROCESSING	HRS/WK-4
Elective – 3C		CREDIT-3

- Digital image Processing is an area which is ever growing in the research side.
- It improves the student's perspective on research side with an eye opener on Digital image processing.

Course Outcomes (CO):

After learning this course, the students should be able to expose

CO1: Ability to gain knowledge on basic fundamentals of Digital Image Processing

CO2: Ability to acquire knowledge about Image Enhancement

CO3: Ability to know about Image Restoration

CO4: Ability to gain idea on Geometric Transforms

CO5: Ability to understand Image Compression.

Relationship Matrix Course Outcome, Programme Outcomes and Programme Specific Outcome

SEMESTER III	COU	RSE CO E	DDE: CPCS91	4A			E TITLE mage Pro			HOURS: CREDITS 4 3				
COURSE OUTCOME	PRO	GRAM	ME OU	TCOMI	E(PO)	PROG	RAMME	SPECIFI	OME(PSO)	MEAN SCORE OF CO				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5				
CO1	4	3	2	3	4	4	4	3	3	3	3.3			
CO2	4	4	2	3	4	3	4	5	3	4	3.	6		
CO3	4	3	2	4	4	2	4	2	4	4	3.	3		
CO4	4	2	2	2	4	4	4	4	4	4	3.0	6		
CO5	4	4	2	3	4	3	4	3	4	3	3.4			
	Mean Overall Score										3.4	4		

Result: The Score of this Course is 3.4(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

[14 Hrs]

UNIT-II IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN: Basic gray-level transformation, histogram processing, enhancement using arithmetic and logic operators, basic spatial filtering, smoothing and sharpening. (p.nos.76-141).

in digital image processing, components of image processing system. Digital Image Fundamentals: A simple image formation model, image sampling and quantization, basic

relationships between pixels. (p.nos. 15-17, 21-44, 50-69).

UNIT-III

UNIT-I

[12 Hrs] IMAGE RESTORATION: A model of the image degradation/restoration process, noise models, restoration in the presence of noise–only spatial filtering, Weiner filtering.

UNIT-IV

[12 Hrs] **GEOMETRIC TRANSFORMS**: Introduction to the Fourier transform and the frequency domain, estimating the degradation function (p. nos147-167,220-243,256-276).

UNIT-V

IMAGE COMPRESSION: Fundamentals, image compression models, error-free compression. (p.nos: 409-467,492-510).

Text Book:

1. Rafeal C. Gonzalez, Richard E. Woods, Digital Image Processing, Second Edition, Pearson Education/PHI.

Reference Books:

- 1. "Image Processing, Analysis, and Machine Vision", Milan Sonka, Vaclav Hlavac and Roger Boyle- Thomson Learning (Second Edition),2007
- 2. "Compute Vision and Image Processing", Adrian Low-B. S. Publications (Second Edition),2014
- 3. "Digital Image Processing", William K. Prat, Wily Third Edition, 2010
- 4. "Digital Image Processing and Analysis", Chanda, D. Datta Majumder Prentice Hall of India, 2003.

[10 Hrs] **INTRODUCTION:** Examples of fields that use digital image processing, fundamental steps

[12 Hrs]

II M.SC (CS)		EPCS915A
SEMESTER – III	RESEARCH METHODS	HRS/WK – 4
ELECTIVE – 4A		CREDIT – 3

To enable student to understand and work with methods and concepts related to Research and also to develop broad comprehension of research area

Course Outcomes (CO):

- **CO1**: Understand and acquire the basics knowledge about research methodology and the research design concepts.
- **CO2:** Understand the various data collection methods for doing research.
- CO3: Knowledge about data analysis methods and its usage.
- **CO4:** Understand the usage and significance of report writing and its techniques.
- **CO5:** Understand about the importance of writing and presentation of research report.

Relationship Matrix Course Outcome, Programme Outcome and Programme Specific Outcome

SEMESTER III			RSE CO EPCS91					URSE TI RCH M	5	HOURS: 4	CREDITS: 3	
COURSE OUTCOME	PRO	GRAMI	PROGRAMME SPECIFIC OUTCOME(PO) PROGRAMME SPECIFIC OUTCOME(PSO)							MEAN SCORE OF CO		
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5		
CO1	3	3	4	4	4	3	4	4	3	3	3.5	
CO2	4	4	3	3	3	4	4	4	3	4	3.6	
CO3	3	4	4	3	3	4	4	4	3	4	3.6	
CO4	4	4	3	3	3	3	4	4	3	4	3.5	
CO5	3	4	3	4	4	4	3	3	4	4	3.6	
	Mean Overall Score										-	3.6

Result: The Score of this Course is 3.6(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%	
Scale	1	2	3	4	5	
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5	
Rating	Very Poor	Poor	Moderate	High	Very High	

UNIT- I

Basics Of Research Methodology: An introduction – Meaning of Research – Objectives of Research – Motivation in Research – Types of Research – Research Approaches – Significance of Research – Research methods versus methodology.

UNIT-II

Research Design: Meaning –needs – features – Important topics related to Research Design-Types-Principles.

Sample Design: Steps – Criteria for selecting a sample design – criteria for good sample design.

UNIT-III

Data Collection: Methods of Data Collection – Collection of primary data – Collection of data through questionnaires – Schedules – Differentiation between questionnaires and schedules – Other methods of data collection – Collection of secondary data – Selection of appropriate method for data collection– Data Collection using Journals.

UNIT-IV

Analyzing Of Data: Processing operations - Some Problems in Processing - Elements/Types of Analysis - Statistics in Research - Measures of Central Tendency -Measures of Dispersion - Measures of Relationship -Simple Regression Analysis -Multiple Correlation and Regression - Partial Correlation.

UNIT- V

Significance Of Report Writing– Different steps in writing Report – Layout of the Research Report – Types of Reports – Oral presentation – Mechanics of writing a Research Report – Precautions for writing a Research Reports – Conclusions.

Text Book:

1. "Research Methodology – Methods and Techniques", C.R. Kothari (2nd Edition), New Delhi, New Age International (P) Limited, 2003.

Reference Book:

1. "Qualitative Research in IS: Issues & Trends", Eileen M. Trauth, USA / London, IDEA Group Publishing, 2001. (ISBN: 1-930708-06-08)

[12Hrs]

[11Hrs]

[13Hrs]

[12Hrs]

[12Hrs]

II M.Sc (C.S)		19EPCS35A
SEMESTER –III	CYBER FORENSICS	HRS/WK-4
Elective – 4B		CREDIT-3

- To Explain the responsibilities and liabilities of a computer forensic investigator
- To collect digital evidences from a crime scene without damaging it or risking it becoming inadmissible in a court of law

COURSE OUTCOMES (CO):

After learning this course, the students should be able to expose

CO1: Ability to gain knowledge on basic Forensics, its tasks, cybercrime laws

CO2: Ability to restrict from crimes, threat and fraud by learning social ethics

CO3: Ability to learn about cyber criminals, crime fighters and understanding investigators

CO4: Ability to understand local, state, national, international laws and their procedures

CO5: Ability to understand how to preserve and recover digital evidence.

Relationship Matrix Course Outcome, Programme Outcome and Programme Specific Outcome

SEMESTER III		COUR	SE CODE:	19EPCS3	85A	COU	RSE TITI	SICS	HOURS: 4	CREDITS: 3		
COURSE OUTCOME]	PROGRA	MME OU	TCOME(I	20)	PROGR	AMME S	PECIFIC	IE(PSO)	MEAN SCORE OF CO		
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5		
CO1	4	4	4	4	4	4	5	3	2	5		3.9
CO2	4	4	4	4	4	4	5	4	3	5		4.1
CO3	4	4	4	4	4	4	5	4	3	5		4.1
CO4	4	4	4	4	4	4	5	3	3	5		4.0
CO5	4	4	4	4	4	4	5	3	2	5		3.9
	Mean Overall Score											4.0

Result: The Score of this Course is 4.0(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

[Hrs 11]

[Hrs 12]

[Hrs 12]

INTRODUCTION TO COMPUTER FORENSICS: Computer forensics definitions - Computers' roles in crimes- Computer forensics tasks-Prepare for an investigation- Collect evidence -Preserve evidence -Recover evidence- Document evidence Challenges associated with making "cybercrime" laws-Jurisdictional issues.

UNIT-1I

UNIT-1

COMPUTER CRIMES: Crimes -Violent crimes where computers are used include terrorism - assault threat- stalking- child pornography -Nonviolent crimes where computers are used include trespass- theft- fraud- vandalism -Where evidence often resides for different types of crimes -Address books- chat logs- e-mail- images- movies- Internet browser history- etc.

UNIT-1II

COMPUTER CRIMINALS: Using evidence to create a crime timeline - Modify Access Create (MAC) dates associated with files- Problems with using these (they don't change in a logical fashion in some cases)-Criminals and crime fighters- Understanding "cyber criminals" and their victims -Understanding "cyber investigators.

UNIT-1V [Hrs 13] BUILDING A CYBERCRIME CASE: Bodies of law- Constitutional law- Criminal law - Civil law- Administrative regulations- Levels of law- Local laws- State laws- Federal laws - International laws- Levels of culpability- Intent -Knowledge- Recklessness- Negligence-Level and burden of proof- Criminal versus civil cases- Vicarious liability- Laws related to computers -CFAA- DMCA- CAN Spam- etc.

UNIT-V PRESERVING AND RECOVERING DIGITAL EVIDENCE Disk imaging -Creating a message digest or hash code for a disk -Where data hides; deleted and erased data -File systems -Files-Modify Access Create (MAC) dates to establish time line -File headers - info about file type.

Text Book :

1. "Guide to Computer Forensics and Investigations", Bill Nelson, Amelia Phillips, Christopher Steuart, - 4th edition, Course Technology- Cengage Learning, 2010

Reference Book:

1. "Computer Crime Scene Investigation", John R. Vacca, Computer Forensics-2nd Edition, Charles River Media, 2005

[Hrs 12]

I M.Sc (C.S)		19EPCS35B
SEMESTER –III	E –BUSINESS	HRS/WK-4
ELECTIVE – 4C		CREDIT-3

- * This course introduces students to various aspects and models for E-Business.
- At the end of the course, students should have an understanding of the impacts which E-Business is having on society, markets and commerce.
- Students should also become aware of the global nature of E-commerce and how traditional means of doing business will need to change in the electronic age.

Course Outcomes (CO):

CO1: Essential knowledge on Business Process Model

CO2. Learn the working environment functions for E Market places

CO3. Learn about the E Business Applications of Outsourcing Industry

CO4. Acquired an idea about employment and job Market online different field and Industries

CO5. Understood the challenges and dynamics of each E-Learning process Education and Industries to help better manage operations

Relationship Matrix Course Outcome, Programme Outcome and Programme Specific Outcome

SEMESTER III	CODI	COU E:19EP(-	OURSE TI E-BUSINI		HOURS: CREDITS 4 3				
COURSE OUTCOME	PRO	GRAM	ME OU	JTCOM	E(PO)	PROG	RAMME	SPECIFIC	MEAN SCORE OF CO					
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3						
CO1	4	4	5	5	4	4	4	4	3	3	4.0			
CO2	4	4	3	4	4	4	4	3	3	4	3.7			
CO3	4	4	3	3	4	4	4	3	4	4	3.9			
CO4	4	4	3	3	4	4	4	3	4	4	3.7			
CO5	4	3	4	4	3	4	4	3	3.7					
			3.8											

Result: The Score of this Course is 3.8(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

[Hrs 12]

INTRODUCTION TO E-BUSINESS AND E-COMMERCE- Define the E-Commerce and E-Business - Define E-Commerce Types of EC transactions - Define E-Business Models - Internet Marketing and E-Tailing - Elements of E-Business Models- Explain the benefits and limitations of E-Commerce.

UNIT-II [Hrs 12] E-MARKETPLACES- Structures, Mechanisms, Economics, and Impacts- Define E- Marketplace and Describe their Functions- Explain E-Marketplace types and their features - Describe the various types of auctions and list their characteristics - Discuss the benefits, limitations and impacts of auctions - E-Commerce in the wireless environment - Competition in the DE and impact on industry

UNIT-III

UNIT-I

E-BUSINESS APPLICATIONS- E-Procurement and E-Payment Systems - Integration and E- Business suits - ERP, E-SCM, CRM - E-Procurement definition, processes, methods and benefits - E-Payment - Discuss the categories and users of smart cards - Describe payment methods in B2B EC.

UNIT-IV

THE IMPACT OF E-BUSINESS ON DIFFERENT FIELDS AND INDUSTRIES - E-Tourism - Employment and Job Market Online - Online Real Estate - Online Publishing and E-Books - Banking and Personal Finance Online - On-Demand Delivery Systems and E-Grocers - Online Delivery of Digital Products, Entertainment, and Media

UNIT-V

E-LEARNING AND ONLINE EDUCATION - Define electronic learning-Discuss the benefits and drawbacks of E-Learning.

THE E-LEARNING INDUSTRY- Discuss E-Content development and tools-Describe the major technologies used in E-Learning- Discuss the different approaches for E-Learning Delivery-How E-Learning can be evaluated. Future Trends-e-Government- Definition of E-Governments-Implementation-E-Government Services- Challenges and Opportunities- E-Government Benefit.

Text Book:

1. "Electronic Commerce: A Managerial Perspective", Turban, E. et al., -Prentice Hall 2008.

Reference Books:

- 1. "Electronic Business and Electronic Commerce Management", Dave Chaffey, 2nd edition, Prentice Hall, 2006
- 2. "E-Learning Tools and Technologies", Horton and Horton-Wiley Publishing, 2003

[Hrs 13]

[Hrs 12]

[Hrs 11]

II-MSC (CS)		21PCSP35
SEMESTER – III	MACHINE LEARNING USING PYTHON	HRS/WK – 5
CORE – PRACTICAL-V	For the students admitted from the year 2021	CREDIT – 3

- This course introduces students to understand basics of Machine Learning with Python.
- Students will also be program and build simple and efficient Machine Learning logic in Python.

Course Outcomes (CO):

- **CO1:** Essential knowledge on Machine Learning Algorithms.
- CO2. Learn the Basics of Machine Learning and its concepts.
- CO3. Acquire the fundamental knowledge on building Machine Learning programs.
- CO4. Develop an idea about Machine Learning Algorithms
- **CO5.** Understand and develop Research Application using Machine Learning.

Relationship Matrix Course Outcome, Programme Outcome and Programme Specific outcome

SEMESTER III			JRSE C 21PCSH			MA	-	OURSE T EARNING	THON	HOURS: 5	CREDITS: 3			
COURSE OUTCOME	PRO	GRAM	ME OU	UTCOM	E(PO)	PROG	RAMME	SPECIFIC	ME(PSO)	MEAN SCORE OF CO				
	PO1	PO	PO	PO4	PO5	PSO1	PSO2	PSO3						
		2	3								4.0			
CO1	4	4	5	5	4	4	4	4	3	3				
CO2	4	4	3	4	4	4	4	3	3	4	3.7	1		
CO3	4	4	3	3	4	4	4	3	4	4	3.9)		
CO4	4	4	3	3	4	4	4	3	4	4	3.7	1		
CO5	4	3	4	4	3	4	4	3	4	3.7	1			
			3.8	3										

Result: The Score of this Course is 3.8(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

MACHINE LEARNING USING PYTHON

- 1. Implement k-Nearest Neighbors Algorithm
- 2. Implement Decision Trees Algorithm
- 3. Implement Naive Bayes Algorithm
- 4. Implement Logistic Regression Algorithm
- 5. Implement Support Vector Machines Algorithm
- 6. Implement K-Means Algorithm
- 7. Implement Hierarchical Clustering Algorithm
- 8. Implement Neural Network Algorithms
- 9. Implement Cross-Validation and Resampling Methods
- 10. Implement Classification Algorithms

WEB REFERENCE:

1. <u>https://medium.com/coders-camp/60-python-projects-with-source-code</u>

II M.Sc (CS)		19JPC306
SEMESTER – III	MINI PROJECT	HRS/WK-3
MINI PROJECT	WINTEROJECT	CREDIT – 3

The main objective of this Mini project is to expose the students to get a broad idea to develop project.

Course Outcomes (CO):

CO1: Ability to perform Critical Thinking, Reasoning, and Creative Thinking.

C02: Ability to use the technology

C03: Ability to visualize the problems and Provide Solution

C04: Ability to test technical skills.

C05: Ability to work both independently and in groups on presentations and/or development of Projects.

SEMESTER III			RSE CO			COURSE TITLE: MINI PROJECT								HOURS:	CREDITS:	
	19JPC306 PROGRAMME OUTCOMES(PO)					PROGRAMME SPECIFIC OUTCOMES(PSO)										
COURSE OUTCOMES	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	MEAN SCORE OF CO'S		
CO1	5	4	5	5	4	4	4	4	4	3	4	4	4	4.10		
CO2	5	4	5	5	4	4	4	4	5	3	4	4	4	4.20		
CO3	5	5	5	5	5	5	5	4	5	3	4	4	4	4	4.50	
CO4	5	5	5	5	5	5	5	4	5	3	4	4	4	4	4.50	
CO5	5	5	5	5	5	5 5 4 5 3 4 4 4						4	4.50			
	Mean Overall Score												4.4			

Result: The Score of this Course is 4.4(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

FORMAT FOR PREPARING MINI PROJECT REPORT

Arrangement of contents

- 1. Title Page
- 2. Bonafide Certificate
- 3. Acknowledgement
- 4. Table of contents
- 5. Abstract
- 6. Chapters of the Report
- 7. References
- 8. Appendices, if any

Appendices should be named as APPENDIX- A

APPENDIX- A

BINDING SPECIFICATION

- Report should be found using flexible cover of thick white Art Paper.
- The Spine for the Bound volume should be of black calico of 2cms width.
- The Cover should be printed in Block letters.

MARGIN SPECIFICATION

Top: 4 cms Bottom : 3 cms Left : 4.5 cms Top : 2.5 cms

PAGE NUMBERING

All Page numbers should be typed without punctuation on the Bottom-Center Portion of the Page. The Preliminary pages (table of contents and abstract) should be numbered in Lowercase Roman Literals. Papers of main Text, starting with Chapter-1, Should be consecutively numbered using Arabic Numerals.

II-MSC (CS)		JPCS1016
SEMESTER – IV	PROJECT	HRS/WK-30
PROJECT	For the students admitted from the year 2008	CREDIT-22

Objective:

The main objective of this Main project is to expose the student to gain knowledge on software development from Industries.

COURSE OUTCOMES (CO):

CO1: Ability to perform Critical Thinking, Reasoning, and Creative Thinking.

C02: Ability to use the technology

C03: Ability to visualize the problems and Provide Solution

C04: Ability to test technical skills.

C05: Ability to work both independently and in groups on presentations and/or development of Projects.

SEMESTE R IV			rse c 8101					COUR	RSE TIT	LE: PR()JECT			HOURS : 30	CREDIT S: 22	
COURSE			OGRAN COME			PROGRAMME SPECIFIC OUTCOMES(PSO)								MEAN S	COREOF	
OUTCOME	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	C	O'S	
S	1	2	3	4	5	1	2	3	4	5	6	7	8			
CO1	5	4	5	5	4	4	4	4	4	3	4	4	4	4	.10	
CO2	5	4	5	5	4	4	4	4	5	3	4	4	4	4	.20	
CO3	5	5	5	5	5	5	5	4	5	3	4	4	4	4	.50	
CO4	5	5	5	5	5	5	5	4	5	3	4	4	4	4	.50	
CO5	5	5	5	5	5	5	5	4	5	3	4	4	4	4	1.50	
					Μ	ean Overall Score						,	4.4			

Result: The Score of this Course is 4.4(High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

FORMAT FOR PREPARING MAIN PROJECT REPORT

Arrangement of contents

- 1. Title Page
- 2. Bonafide Certificate
- 3. Acknowledgement
- 4. Table of contents
- 5. Abstract
- 6. Chapters of the Report
- 7. References
- 8. Appendices, if any

Appendices should be named as APPENDIX – A APPENDIX - B

BINDING SPECIFICATION

- Report should be found using flexible cover of thick white Art Paper.
- The Spine for the Bound volume should be of black calico of 2cms width.
- The Cover should be printed in Block letters.

MARGIN SPECIFICATION

Тор	: 4	cms
Bottom	: 3	cms
Left	: 4.5	cms
Тор	: 2.5	cms

PAGE NUMBERING

All Page numbers should be typed without punctuation on the Bottom-Center Portion of the Page. The Preliminary pages (table of contents and abstract) should be numbered in Lowercase Roman Literals. Papers of main Text, starting with Chapter-1, Should be consecutively numbered using Arabic Numerals.